@inproceedings{nelson-2020-joint,
title = "Joint learning of constraint weights and gradient inputs in Gradient Symbolic Computation with constrained optimization",
author = "Nelson, Max",
editor = "Nicolai, Garrett and
Gorman, Kyle and
Cotterell, Ryan",
booktitle = "Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.sigmorphon-1.27",
doi = "10.18653/v1/2020.sigmorphon-1.27",
pages = "224--232",
abstract = "This paper proposes a method for the joint optimization of constraint weights and symbol activations within the Gradient Symbolic Computation (GSC) framework. The set of grammars representable in GSC is proven to be a subset of those representable with lexically-scaled faithfulness constraints. This fact is then used to recast the problem of learning constraint weights and symbol activations in GSC as a quadratically-constrained version of learning lexically-scaled faithfulness grammars. This results in an optimization problem that can be solved using Sequential Quadratic Programming.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nelson-2020-joint">
<titleInfo>
<title>Joint learning of constraint weights and gradient inputs in Gradient Symbolic Computation with constrained optimization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Max</namePart>
<namePart type="family">Nelson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Gorman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a method for the joint optimization of constraint weights and symbol activations within the Gradient Symbolic Computation (GSC) framework. The set of grammars representable in GSC is proven to be a subset of those representable with lexically-scaled faithfulness constraints. This fact is then used to recast the problem of learning constraint weights and symbol activations in GSC as a quadratically-constrained version of learning lexically-scaled faithfulness grammars. This results in an optimization problem that can be solved using Sequential Quadratic Programming.</abstract>
<identifier type="citekey">nelson-2020-joint</identifier>
<identifier type="doi">10.18653/v1/2020.sigmorphon-1.27</identifier>
<location>
<url>https://aclanthology.org/2020.sigmorphon-1.27</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>224</start>
<end>232</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint learning of constraint weights and gradient inputs in Gradient Symbolic Computation with constrained optimization
%A Nelson, Max
%Y Nicolai, Garrett
%Y Gorman, Kyle
%Y Cotterell, Ryan
%S Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F nelson-2020-joint
%X This paper proposes a method for the joint optimization of constraint weights and symbol activations within the Gradient Symbolic Computation (GSC) framework. The set of grammars representable in GSC is proven to be a subset of those representable with lexically-scaled faithfulness constraints. This fact is then used to recast the problem of learning constraint weights and symbol activations in GSC as a quadratically-constrained version of learning lexically-scaled faithfulness grammars. This results in an optimization problem that can be solved using Sequential Quadratic Programming.
%R 10.18653/v1/2020.sigmorphon-1.27
%U https://aclanthology.org/2020.sigmorphon-1.27
%U https://doi.org/10.18653/v1/2020.sigmorphon-1.27
%P 224-232
Markdown (Informal)
[Joint learning of constraint weights and gradient inputs in Gradient Symbolic Computation with constrained optimization](https://aclanthology.org/2020.sigmorphon-1.27) (Nelson, SIGMORPHON 2020)
ACL