@inproceedings{cathcart-wandl-2020-search,
title = "In search of isoglosses: continuous and discrete language embeddings in {S}lavic historical phonology",
author = "Cathcart, Chundra and
Wandl, Florian",
editor = "Nicolai, Garrett and
Gorman, Kyle and
Cotterell, Ryan",
booktitle = "Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.sigmorphon-1.28",
doi = "10.18653/v1/2020.sigmorphon-1.28",
pages = "233--244",
abstract = "This paper investigates the ability of neural network architectures to effectively learn diachronic phonological generalizations in amultilingual setting. We employ models using three different types of language embedding (dense, sigmoid, and straight-through). We find that the Straight-Through model out-performs the other two in terms of accuracy, but the Sigmoid model{'}s language embeddings show the strongest agreement with the traditional subgrouping of the Slavic languages. We find that the Straight-Through model has learned coherent, semi-interpretable information about sound change, and outline directions for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cathcart-wandl-2020-search">
<titleInfo>
<title>In search of isoglosses: continuous and discrete language embeddings in Slavic historical phonology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chundra</namePart>
<namePart type="family">Cathcart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Florian</namePart>
<namePart type="family">Wandl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Gorman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper investigates the ability of neural network architectures to effectively learn diachronic phonological generalizations in amultilingual setting. We employ models using three different types of language embedding (dense, sigmoid, and straight-through). We find that the Straight-Through model out-performs the other two in terms of accuracy, but the Sigmoid model’s language embeddings show the strongest agreement with the traditional subgrouping of the Slavic languages. We find that the Straight-Through model has learned coherent, semi-interpretable information about sound change, and outline directions for future research.</abstract>
<identifier type="citekey">cathcart-wandl-2020-search</identifier>
<identifier type="doi">10.18653/v1/2020.sigmorphon-1.28</identifier>
<location>
<url>https://aclanthology.org/2020.sigmorphon-1.28</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>233</start>
<end>244</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T In search of isoglosses: continuous and discrete language embeddings in Slavic historical phonology
%A Cathcart, Chundra
%A Wandl, Florian
%Y Nicolai, Garrett
%Y Gorman, Kyle
%Y Cotterell, Ryan
%S Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F cathcart-wandl-2020-search
%X This paper investigates the ability of neural network architectures to effectively learn diachronic phonological generalizations in amultilingual setting. We employ models using three different types of language embedding (dense, sigmoid, and straight-through). We find that the Straight-Through model out-performs the other two in terms of accuracy, but the Sigmoid model’s language embeddings show the strongest agreement with the traditional subgrouping of the Slavic languages. We find that the Straight-Through model has learned coherent, semi-interpretable information about sound change, and outline directions for future research.
%R 10.18653/v1/2020.sigmorphon-1.28
%U https://aclanthology.org/2020.sigmorphon-1.28
%U https://doi.org/10.18653/v1/2020.sigmorphon-1.28
%P 233-244
Markdown (Informal)
[In search of isoglosses: continuous and discrete language embeddings in Slavic historical phonology](https://aclanthology.org/2020.sigmorphon-1.28) (Cathcart & Wandl, SIGMORPHON 2020)
ACL