
Proceedings of the 9th Workshop on the Representation and Processing of Sign Languages, pages 165–170
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

165

Automatic Classification of Handshapes in Russian Sign Language

Medet Mukushev∗, Alfarabi Imashev∗, Vadim Kimmelman†, Anara Sandygulova∗
∗Department of Robotics and Mechatronics, School of Engineering and Digital Sciences, Nazarbayev University

Kabanbay Batyr Avenue, 53, Nur-Sultan, Kazakhstan
†Department of Linguistic, Literary and Aesthetic Studies, University of Bergen

Postboks 7805, 5020, Bergen, Norway
mmukushev@nu.edu.kz, alfarabi.imashev@nu.edu.kz, vadim.kimmelman@uib.no, anara.sandygulova@nu.edu.kz

Abstract
Handshapes are one of the basic parameters of signs, and any phonological or phonetic analysis of a sign language must account
for handshapes. Many sign languages have been carefully analysed by sign language linguists to create handshape inventories. This
has theoretical implications, but also applied use, as an inventory is necessary for generating corpora for sign languages that can be
searched, filtered, sorted by different sign components (such as handshapes, orientation, location, movement, etc.). However, creating an
inventory is a very time-consuming process, thus only a handful of sign languages have them. Therefore, in this work we firstly test an
unsupervised approach with the aim to automatically generate a handshape inventory. The process includes hand detection, cropping, and
clustering techniques, which we apply to a commonly used resource: the Spreadthesign online dictionary (www.spreadthesign.com), in
particular to Russian Sign Language (RSL). We then manually verify the data to be able to apply supervised learning to classify new data.
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1. Introduction

Signs in sign languages are composed of phonological com-
ponents put together under certain rules (Sandler and Lillo-
Martin, 2006). In the early days of sign language linguis-
tics, three main components were identified: handshape, lo-
cation on the body, and movement, while later orientation
and non-manual component were added. A recent paper
stresses the need to combine interdisciplinary approaches
in order to build successful sign language processing sys-
tems that account for their complex linguistic nature (Bragg
et al., 2019).
By deploying a number of computer vision approaches, this
paper aims to automate one of the most time-consuming
tasks for linguists i.e. creation of a handshape inventory.
Many researchers worked on establishing phonetic hand-
shape and phonemic handshape inventories (see e.g. (Van
der Kooij, 2002; Nyst, 2007; Tsay and Myers, 2009; Kubuş,
2008; Klezovich, 2019). In all of these works, handshapes
were extracted and annotated manually (Klezovich, 2019).
Klezovich (2019) proposed the first handshape inventory
for Russian Sign Language (RSL) by applying semi-
automatic approach of extracting hold-stills in a sign video
based on images overlay approach. The reason for extract-
ing hold-stills from the rest of the video frames is due to
the fact that handshapes are the most clear and visible in
hold positions, and transitional movements never contain
distinct handshapes. Klezovich proposed to extract hold-
stills and then manually label only these frames, which can
significantly speed up the process of creating handshape in-
ventories (Klezovich, 2019).
In this paper, we test an automatic approach to generating
handshape inventory for Russian Sign Language. First, we
try an unsupervised learning and demonstrate that the re-
sults are unsatisfactory, because this method cannot distin-
guish handshapes separately from orientation and location
in their classification. Second, we manually label a train-
ing dataset according to HamNoSys handshapes (Hanke,

2004), and demonstrate the utility of the supervised learn-
ing on new data.

2. Handshape as a phonological component
Ever since the seminal book by Stokoe (1960) on American
Sign Language (ASL), signs in sign languages are analyzed
as consisting of several parameters, one of the major ones
being handshape (Sandler and Lillo-Martin, 2006). Hand-
shape itself is not considered an atomic parameter of a sign,
usually being further subdivided into selected fingers and
finger flexion (Brentari, 1998).
Much research has been devoted to theoretical approaches
to handshapes (see (Sandler and Lillo-Martin, 2006) for
an overview), as well as to descriptions of handshape in-
ventories in different sign languages (see e.g. (Caselli et
al., 2017; Sutton-Spence and Woll, 1999; Fenlon et al.,
2015; Kubuş, 2008; Klezovich, 2019; Kubuş, 2008; Van
der Kooij, 2002; Prillwitz, 2005; Tsay and Myers, 2009)).
Several issues have been identified in studying handshapes
that can be currently addressed using novel methods. First,
many researchers identify the existence of the so-called un-
marked handshapes (Sandler and Lillo-Martin, 2006, 161-
162). These handshapes are maximally distinct in terms
of their overall shape, they are the easiest to articulate, the
most frequently occurring in signs, the first to be acquired
by children, etc. For instance, in ASL, the following hand-
shapes are generally treated as unmarked: A (fist), 5 (all
fingers outstretched), 1 (index finger straight, all the other
closed), E (all fingers bent and touching).
Since unmarkedness of handshapes derives from their vi-
sual and articulatory properties, it is expected that the same
handshapes should be unmarked across different sign lan-
guages. This appears to be the case, although slight vari-
ation can also be observed. For instance, in Turkish Sign
Language (TID), 7 handshapes can be identified as being
the most frequent, including two handshapes based on the
fist with or without outstretched thumb (Kubuş, 2008).
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Figure 1: 135 top activated clusters for HOG descriptors.

In addition to the observation that (approximately) the same
handshapes are the most frequent, a surprising finding is
that the frequency of the most frequent handshapes is ex-
tremely similar across different sign languages. For in-
stance, in British Sign Language (BSL), 50% of signs have
one of the four unmarked handshapes (Sutton-Spence and
Woll, 1999); in Turkish Sign Language, if we only consider
the four most frequent handshapes, this would account for
57% of the signs (Kubuş, 2008), and, in ASL, the four most
frequent handshapes in the ASL-LEX dataset (Caselli et al.,
2017) account for 49% of all signs.
Secondly, some researchers argue that sign languages dif-
fer in their phonemic inventories, including the inventories
of handshapes. For instance, Sign Language of the Nether-
lands has 70 phonetic and 31 phonemic handshapes (Van
der Kooij, 2002), and many other sign languages are re-
ported to have inventories of similar sizes (Kubuş, 2008;
Caselli et al., 2017; Prillwitz, 2005). At the same time,
Adamorobe Sign Language has been reported to have only
29 phonetic and 7 phonemic handshapes (Nyst, 2007). On
the opposite end, a recent study of Russian Sign Language
(RSL) based on semi-automatic large scale analysis has
claimed that RSL has 117 phonetic but only 23 phonemic
handshapes (Klezovich, 2019). Note however, that it is very
difficult to directly compare results from different sign lan-
guages because different methods of assessing phonemic
status of handshapes are used.
So we can observe both similarities in handshapes across
different sign languages, as well as considerable variation.
At the same time, it is difficult to make direct comparison
because different datasets and annotation and classification
methods are applied in different studies.

In the current study, we propose and test a method that can
be applied to classifying handshapes across many sign lan-
guages using a common data set: the Spreadthesign online
dictionary (www.spreadthesign.com). As a proof of con-
cept, we analyze data from Russian Sign Language.

3. Dataset pre-processing
3.1. Dataset
The dataset was created by downloading videos from the
Spreadthesign online dictionary (www.spreadthesign.com).
We have downloaded a total of 14875 RSL videos from the
website. The videos contain either a single sign or a phrase
consisting of several signs.
Klezovich (2019) used the Spreadthesign online dictio-
nary too, and after removing compounds, dactyl-based and
number-based signs, she ended up working with 3727 signs
or 5189 hold-stills.
In our case, blur images are removed using variation of
Laplacian with a threshold of 350. If the variance is lower
than the threshold then image is considered blurry, other-
wise image is not blurry. Normally, we select threshold by
trial and error depending on a dataset, there is no univer-
sal value. This reduced the number of total images from
141135 images to 18226 cropped images of hands.

3.2. Hand extraction
Hand detection can be considered as a sub-task of object
detection and segmentation in images and videos. Hands
can appear in various shapes, orientations and configura-
tions, which creates additional challenges. Object detec-
tion frameworks such as MaskRCNN (He et al., 2017) and
CenterNet (Duan et al., 2019) can be applied for this task.

www.spreadthesing.com
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However, occlusions and motion blur might decrease ac-
curacy of the trained models. For these reasons, in this
work, we used a novel CNN architecture namely Hand-
CNN (Narasimhaswamy et al., 2019). Its architecture is
based on the MaskRCNN (He et al., 2017) with an addi-
tional attention module that includes contextual cues dur-
ing the detection process. In order to avoid issues with the
occlusions and motion blur, Hand-CNN’s proposed atten-
tion module is intended for two types of non-local contex-
tual pooling, feature similarity and spatial relationship be-
tween semantically related entities. The Hand-CNN model
provides segmentation, bounding boxes and orientations of
detected hands. We utilize the predicted bounding boxes to
crop hands with two padding parameters: a 0-pixel padding
and a 20-pixel padding. As a result, the first group contains
cropped images of detected hands only, while the other
group contains cropped images of hands and their positions
relative to the body.

3.3. Image pre-processing
To images with a 0-pixel-padding on detected hands, we
apply Histogram of Oriented Gradients (HOG) descriptors
(Dalal and Triggs, 2005). HOG feature descriptors are
commonly used in computer vision for object detection
(e.g. people detection in static images). This technique is
based on distribution of intensity gradients or edge direc-
tions. Firstly, an image is divided into small regions and
then each region has its histogram of gradient directions
calculated. Concatenations of these histograms are used as
features for clustering algorithm. In this work we use “fea-
ture” module of the scikit-image library (van der Walt et al.,
2014) with the following parameters: orientations = 9, pix-
els per cell = (10,10), cells per block = (2,2) and L1 used as
a block normalization method. Prior to this pre-processing,
all images are transformed to grayscale and resized to 128
by 128 pixel images.
To images with a 20-pixel-padding on detected hands we
utilize AlexNet (Krizhevsky et al., 2012). It is a Convolu-
tional Neural Network (CNN) commonly used for various
image processing tasks as a baseline architecture. We use
only the first five convolutional layers with 96, 256, 384,
384 and 256 filters, as we only need to extract features for
clustering purposes without the need for classification of
images. Prior to feature extraction all images are resized to
224 by 224 pixels. CNN features are PCA-reduced to 256
dimensions before clustering.

4. Unsupervised Methodology
4.1. Clustering
We utilize a classical clustering algorithm, namely k-
means. Thus, k-means implementation by (Johnson et al.,
2019) is applied to ConvNet features, while scikit-learn
(Pedregosa et al., 2011) implementation is applied to HOG
features. Each training is performed for 20 iterations with
random initialization.
We experimentally determined the number of clusters to be
specified for clustering. It seemed like handshape orien-
tation was also accounted for by the clustering algorithm,
the idea was to increase the number of clusters to force the
algorithm to differentiate between orientations. By trying

Figure 2: Average Silhouette Coefficient scores for the
model trained on AlexNet features

Figure 3: Normalized mutual information

varying step size, we ended up with setting for the follow-
ing sizes: 100, 150, 200, 300 and 400 clusters.

4.2. Analysis and evaluation
We use two metrics to evaluate the performance of the clus-
tering models: the Silhouette Coefficient and Normalized
Mutual Information (NMI).
When the ground truth labels are not known for predicted
clusters, Silhouette Coefficient score is applied. Silhouette
method is used for interpretation and validation of cluster-
ing analysis (Rousseeuw, 1987). Its value gives understand-
ing of how similar an item is to its own cluster compared
to other clusters. Silhouette is bounded between -1 and +1,
where a higher value means that a clustered item is well
matched to its cluster and less matched to other clusters. As
can be seen from Figure 2, the maximum value of Silhou-
ette Coefficient score is observed for the model trained on
AlexNet features for 100 clusters after 15 epochs. However,
the score itself is just slightly over 0.12 which indicates that
our clusters are overlapping.
In addition, we use predicted labels to measure NMI. It is
a function that measures the agreement between predicted
and actual labels. Perfect labeling gives score of +1 and
bad labeling gives negative scores. As we can see from
Figure 3, all models with different number of clusters result
in the scores reaching 0.9 after 15 epochs.
The reason for such results might be that image descriptors
for hands are too close to each other, which makes it diffi-
cult for the algorithm to differentiate. At the same time,
NMI score indicates that predicted labels are almost the
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same after each training epoch. In order to increase density
of predicted clusters additional pre-processing of images is
required.

4.3. Results
Figure 1 gives us insights about the results of applying un-
supervised clustering to handshapes. First, it is clear that
the algorithm does not distinguish classes only based on
handshapes, but also based on orientation (for images with
0-pixel-padding), and also based on localization (for im-
ages with 20-pixel-padding). If the linguistic task of creat-
ing an inventory of phonemic handshapes is at stake, this is
a clear disadvantage of this approach.
Second, despite its shortcomings, the method does provide
some linguistically interesting results. Specifically, one
can see that the handshapes which are expected to be un-
marked (A, 5, 1) appear frequently and as labels for multi-
ple classes. Thus, even though the classification is not lin-
guistically relevant, the effect of markedness is still visible
in the results of this unsupervised approach.

5. Supervised Methodology
5.1. Dataset
Given that the unsupervised approaches did not result in
a clustering reflective of relevant handshape classes, we
turned to a supervised approach. The results of HOG clus-
tering was used as the initial dataset that contained 140
clusters of 18226 images. It was decided to manually clean
the automatically generated clusters for inaccuracies. This
task was performed by four undergraduate students, who
divided the folders first between each other and then one
person merged all of them.
First, each cluster (folder) was visually scanned for the
most frequently classified handshape in order to remove
handshapes that did not belong there from that folder.
These steps were performed for all 140 folders. Since there
were many folders of the same handshape with the only dif-
ference in orientation, they were merged, which resulted in
35 classes and a large unsorted (junk) folder. Thus, the final
version of the dataset contains 35 classes of 7346 cropped
images with 0-pixel-padding.
The classes were created using intuitive visual similarity as
a guide, and by linguistically naive annotators. However, a
post factum analysis shows that the manual classification is
linguistically reasonable as an approximation of a phono-
logical inventory. Specifically, the classes that were created
are distinguished by selected fingers, spreading (spread or
not), and finger position (straight, bent, curved). Thumb
position is only used as a distinguishing feature for opposed
thumb vs. all other possibilities. Non-selected finger posi-
tion is not taken into account. This reasonably approxi-
mates features relevant for proposed phonological invento-
ries in other sign languages, and, as such, can be used for
RSL as well.
If phonetic classes were the target, then classes would also
need to be distinguished by exact thumb position and also
by the differences in non-selected fingers. In such a case
the full inventory of possible handshapes described in Ham-
NoSys (Hanke, 2004) could be used as the basis for manual

Figure 4: Handshape classes count

classification. However, the dataset we used appears to be
too small to attempt a phonetic classification.
The manually labeled subset was later divided into a train-
ing set with 6430 images and a validation set with 916 im-
ages. Figure 4 shows the number of tokens for each class
in a training and validation sets combined. Figure 4 also
shows a linguistically relevant result: our manual classifi-
cation of handshapes also demonstrates the expected fre-
quency properties of marked and unmarked handshapes.
In particular, the most frequent handshapes are the ones
expected to be unmarked: A (fist), 5 (hand with all fin-
gers spread), 1 (index finger), and B (a flat palm)).1 These
forms together constitute 48% of all handshapes (if the two-
handed signs are disregarded).

5.2. ConvNet and transfer learning
Training an entire ConvNet from scratch for a specific task
requires big computational resources and large datasets,
which are not always available. For this reason, a more
common approach is to use ConvNet that was pretrained
on large datasets, such as ResNet-18 or ImageNet (which
contains 1.2 million images divided into 1000 categories)
as a feature extractor for a new task. There are two com-
mon transfer learning techniques based on how we use pre-
trained ConvNet: finetuning the ConvNet and ConvNet as
a fixed feature extractor. In the first technique, we use
weights of a pretrained model to initialize our network in-
stead of random initialization. All the layers of the Con-
vNet are trained. In the second approach, we freeze the
weights for all of the network layers and only the last final
fully connected layer is changed with random weights and

1The 10.88% class in Figure 4 includes all two-handed signs,
which we do not attempt to classify according to handshape at the
moment.
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Figure 5: Handshape classes count using classifier

only this layer is trained. We implemented our networks us-
ing PyTorch (release: 1.4.0) that is an open source machine
learning library (Paszke et al., 2019). Our code is based
on Chilamkurthy’s Transfer Learning for Computer Vision
Tutorial (Chilamkurthy, 2017). ResNet-18 (He et al., 2016)
model was used as a pretrained model.

5.3. Results
We trained two networks using both approaches. Each
model was trained for 200 epochs. Using the second ap-
proach (i.e. ConvNet as a fixed feature extractor with only
the last layer trained), the best accuracy of 43.2% was
achieved. On the other hand, the first approach (i.e. fine-
tuning the ConvNet and training all layers) demonstrated a
better accuracy of 67%. Therefore, the finetuned model was
used for further accuracy improvements. First, we added
data augmentation to increase the number of samples. Sam-
ples were randomly rotated and visual parameters (bright-
ness, contrast, and saturation) were randomly changed with
a probability of 0.25. This helped to increase the accuracy
of the best model up to 74.5% after 200 epochs. Later, we
used this trained model to predict labels for all 18226 hand-
shapes. In order to remove cases that were misclassified, a
threshold for prediction probability was set to 0.7. And as
a result, 12042 samples were classified. Figure 5 demon-
strates the number of predicted samples for each class.

6. Discussion
6.1. Insights from unsupervised and supervised

approaches
The current study shows that the unsupervised approach
does not seem promising in the task of automating hand-
shape recognition. The main problem is that the category

of handshape is linguistically relevant, but not visually sep-
arable from orientation and location by this very basic data-
driven approach.
We have demonstrated that an alternative approach involv-
ing a manual classification step can be quite effective.
However, manual classification is problematic for obvious
reasons, as it involves human judgment.
Both approaches, however, offer some linguistically rel-
evant insights, specifically concerning unmarked hand-
shapes. In the unsupervised approach, it is clear that
many clusters are assigned unmarked handshapes as labels,
which can be explained by both their frequency and visual
salience. In the supervised approach, our manual classifi-
cation of 7346 handshapes demonstrated that the unmarked
handshapes (A, 1, 5, B) are indeed the most frequent ones.
Finally, applying the ConvNet model to the whole dataset
of 18226 handshapes has shown that top 3 classes are A,
B, 5. Interestingly, the 1 handshape is not in the top most
frequent ones. The most likely explanation is that this
handshape is frequently misclassified as the handshape with
middle finger bent and the other fingers outstretched (the
‘jesus’ handshape in the figures), which is a rare marked
handshape in the manually classified dataset, but frequent
in the results using the classifier.
Thus, both successful and less successful applications of
machine learning methods show the importance of un-
marked handshapes in RSL. It would be interesting to ex-
tend these approaches to other sign languages for compar-
ative purposes.

6.2. Comparison with Klezovich 2019

As discussed above, Klezovich (2019) proposed the first
handshape inventory for RSL by applying semi-automatic
approach of extracting hold-stills in a sign video using the
same dataset used here (Spreadthesign). This gives us the
opportunity to compare the results of a more traditional lin-
guistic analysis of handshape classes in RSL with the ap-
proach used in the current study.
A direct comparison is possible between Klezovich’s re-
sults and the results of our unsupervised learning ap-
proaches. Both result in a classification of handshapes.
However, we have demonstrated that the results of unsu-
pervised clustering are unsatisfactory, so it cannot be used
for any linguistically meaningful applications.
As for the supervised approach, both our approach and Kle-
zovich’s analysis include manual annotation, but in differ-
ent ways. Klezovich manually classified handshapes into
potential phonemic classes using linguistic criteria, which
resulted in a large linguistically informed inventory. We
manually classified handshapes based on visual similarity
into a smaller number of classes, and then used this as a
dataset for machine learning.
The comparison between Klezovich’s and our manual clas-
sifications is not very informative, as only the former was
based on linguistic criteria. Given that Klezovich’s classifi-
cation was not used as a training set for automatic recogni-
tion, no comparison is possible for this aspect either. This
issue is left for future research.
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7. Conclusion
We have shown that by deploying a number of classical
machine learning algorithms, it is possible to partially auto-
mate one of the most time-consuming tasks for linguists i.e.
creation of a handshape inventory, and, in addition, to in-
vestigate frequencies of various handshapes in a large data
set. At the moment, it seems that unsupervised approaches
cannot be used to create handshape inventories because ori-
entation and location differences also influence clustering,
and to an even greater extent than handshape itself. A su-
pervised approach is clearly more effective, however, it re-
quires a manual annotation component where a substantial
number of handshapes is manually classified. This intro-
duces additional problems of determining the number of
classes for manual classification. Upon achieving the satis-
fying unsupervised clustering results, future work will fo-
cus on comparing and applying this framework to other sign
languages.
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