@inproceedings{sirajzade-etal-2020-component,
title = "Component Analysis of Adjectives in {L}uxembourgish for Detecting Sentiments",
author = "Sirajzade, Joshgun and
Gierschek, Daniela and
Schommer, Christoph",
editor = "Beermann, Dorothee and
Besacier, Laurent and
Sakti, Sakriani and
Soria, Claudia",
booktitle = "Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources association",
url = "https://aclanthology.org/2020.sltu-1.22/",
pages = "159--166",
language = "eng",
ISBN = "979-10-95546-35-1",
abstract = "The aim of this paper is to investigate the role of Luxembourgish adjectives in expressing sentiments in user comments written at the web presence of rtl.lu (RTL is the abbreviation for Radio Television Letzebuerg). Alongside many textual features or representations,adjectives could be used in order to detect sentiment, even on a sentence or comment level. In fact, they are also by themselves one of the best ways to describe a sentiment, despite the fact that other word classes such as nouns, verbs, adverbs or conjunctions can also be utilized for this purpose. The empirical part of this study focuses on a list of adjectives that were extracted from an annotated corpus. The corpus contains the part of speech tags of individual words and sentiment annotation on the adjective, sentence and comment level. Suffixes of Luxembourgish adjectives like -esch, -eg, -lech, -al, -el, -iv, -ent, -los, -barand the prefixon- were explicitly investigated, especially by paying attention to their role in regards to building a model by applying classical machine learning techniques. We also considered the interaction of adjectives with other grammatical means, especially other part of speeches, e.g. negations, which can completely reverse the meaning, thus the sentiment of an utterance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sirajzade-etal-2020-component">
<titleInfo>
<title>Component Analysis of Adjectives in Luxembourgish for Detecting Sentiments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joshgun</namePart>
<namePart type="family">Sirajzade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniela</namePart>
<namePart type="family">Gierschek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christoph</namePart>
<namePart type="family">Schommer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dorothee</namePart>
<namePart type="family">Beermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Besacier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Soria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-35-1</identifier>
</relatedItem>
<abstract>The aim of this paper is to investigate the role of Luxembourgish adjectives in expressing sentiments in user comments written at the web presence of rtl.lu (RTL is the abbreviation for Radio Television Letzebuerg). Alongside many textual features or representations,adjectives could be used in order to detect sentiment, even on a sentence or comment level. In fact, they are also by themselves one of the best ways to describe a sentiment, despite the fact that other word classes such as nouns, verbs, adverbs or conjunctions can also be utilized for this purpose. The empirical part of this study focuses on a list of adjectives that were extracted from an annotated corpus. The corpus contains the part of speech tags of individual words and sentiment annotation on the adjective, sentence and comment level. Suffixes of Luxembourgish adjectives like -esch, -eg, -lech, -al, -el, -iv, -ent, -los, -barand the prefixon- were explicitly investigated, especially by paying attention to their role in regards to building a model by applying classical machine learning techniques. We also considered the interaction of adjectives with other grammatical means, especially other part of speeches, e.g. negations, which can completely reverse the meaning, thus the sentiment of an utterance.</abstract>
<identifier type="citekey">sirajzade-etal-2020-component</identifier>
<location>
<url>https://aclanthology.org/2020.sltu-1.22/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>159</start>
<end>166</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Component Analysis of Adjectives in Luxembourgish for Detecting Sentiments
%A Sirajzade, Joshgun
%A Gierschek, Daniela
%A Schommer, Christoph
%Y Beermann, Dorothee
%Y Besacier, Laurent
%Y Sakti, Sakriani
%Y Soria, Claudia
%S Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)
%D 2020
%8 May
%I European Language Resources association
%C Marseille, France
%@ 979-10-95546-35-1
%G eng
%F sirajzade-etal-2020-component
%X The aim of this paper is to investigate the role of Luxembourgish adjectives in expressing sentiments in user comments written at the web presence of rtl.lu (RTL is the abbreviation for Radio Television Letzebuerg). Alongside many textual features or representations,adjectives could be used in order to detect sentiment, even on a sentence or comment level. In fact, they are also by themselves one of the best ways to describe a sentiment, despite the fact that other word classes such as nouns, verbs, adverbs or conjunctions can also be utilized for this purpose. The empirical part of this study focuses on a list of adjectives that were extracted from an annotated corpus. The corpus contains the part of speech tags of individual words and sentiment annotation on the adjective, sentence and comment level. Suffixes of Luxembourgish adjectives like -esch, -eg, -lech, -al, -el, -iv, -ent, -los, -barand the prefixon- were explicitly investigated, especially by paying attention to their role in regards to building a model by applying classical machine learning techniques. We also considered the interaction of adjectives with other grammatical means, especially other part of speeches, e.g. negations, which can completely reverse the meaning, thus the sentiment of an utterance.
%U https://aclanthology.org/2020.sltu-1.22/
%P 159-166
Markdown (Informal)
[Component Analysis of Adjectives in Luxembourgish for Detecting Sentiments](https://aclanthology.org/2020.sltu-1.22/) (Sirajzade et al., SLTU 2020)
ACL
- Joshgun Sirajzade, Daniela Gierschek, and Christoph Schommer. 2020. Component Analysis of Adjectives in Luxembourgish for Detecting Sentiments. In Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL), pages 159–166, Marseille, France. European Language Resources association.