@inproceedings{lee-etal-2020-counselling,
title = "A Counselling Corpus in {C}antonese",
author = "Lee, John and
Cai, Tianyuan and
Xie, Wenxiu and
Xing, Lam",
booktitle = "Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources association",
url = "https://aclanthology.org/2020.sltu-1.50",
pages = "358--361",
abstract = "Virtual agents are increasingly used for delivering health information in general, and mental health assistance in particular. This paper presents a corpus designed for training a virtual counsellor in Cantonese, a variety of Chinese. The corpus consists of a domain-independent subcorpus that supports small talk for rapport building with users, and a domain-specific subcorpus that provides material for a particular area of counselling. The former consists of ELIZA style responses, chitchat expressions, and a dataset of general dialog, all of which are reusable across counselling domains. The latter consists of example user inputs and appropriate chatbot replies relevant to the specific domain. In a case study, we created a chatbot with a domain-specific subcorpus that addressed 25 issues in test anxiety, with 436 inputs solicited from native speakers of Cantonese and 150 chatbot replies harvested from mental health websites. Preliminary evaluations show that Word Mover{'}s Distance achieved 56{\%} accuracy in identifying the issue in user input, outperforming a number of baselines.",
language = "English",
ISBN = "979-10-95546-35-1",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2020-counselling">
<titleInfo>
<title>A Counselling Corpus in Cantonese</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyuan</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenxiu</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lam</namePart>
<namePart type="family">Xing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-35-1</identifier>
</relatedItem>
<abstract>Virtual agents are increasingly used for delivering health information in general, and mental health assistance in particular. This paper presents a corpus designed for training a virtual counsellor in Cantonese, a variety of Chinese. The corpus consists of a domain-independent subcorpus that supports small talk for rapport building with users, and a domain-specific subcorpus that provides material for a particular area of counselling. The former consists of ELIZA style responses, chitchat expressions, and a dataset of general dialog, all of which are reusable across counselling domains. The latter consists of example user inputs and appropriate chatbot replies relevant to the specific domain. In a case study, we created a chatbot with a domain-specific subcorpus that addressed 25 issues in test anxiety, with 436 inputs solicited from native speakers of Cantonese and 150 chatbot replies harvested from mental health websites. Preliminary evaluations show that Word Mover’s Distance achieved 56% accuracy in identifying the issue in user input, outperforming a number of baselines.</abstract>
<identifier type="citekey">lee-etal-2020-counselling</identifier>
<location>
<url>https://aclanthology.org/2020.sltu-1.50</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>358</start>
<end>361</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Counselling Corpus in Cantonese
%A Lee, John
%A Cai, Tianyuan
%A Xie, Wenxiu
%A Xing, Lam
%S Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)
%D 2020
%8 May
%I European Language Resources association
%C Marseille, France
%@ 979-10-95546-35-1
%G English
%F lee-etal-2020-counselling
%X Virtual agents are increasingly used for delivering health information in general, and mental health assistance in particular. This paper presents a corpus designed for training a virtual counsellor in Cantonese, a variety of Chinese. The corpus consists of a domain-independent subcorpus that supports small talk for rapport building with users, and a domain-specific subcorpus that provides material for a particular area of counselling. The former consists of ELIZA style responses, chitchat expressions, and a dataset of general dialog, all of which are reusable across counselling domains. The latter consists of example user inputs and appropriate chatbot replies relevant to the specific domain. In a case study, we created a chatbot with a domain-specific subcorpus that addressed 25 issues in test anxiety, with 436 inputs solicited from native speakers of Cantonese and 150 chatbot replies harvested from mental health websites. Preliminary evaluations show that Word Mover’s Distance achieved 56% accuracy in identifying the issue in user input, outperforming a number of baselines.
%U https://aclanthology.org/2020.sltu-1.50
%P 358-361
Markdown (Informal)
[A Counselling Corpus in Cantonese](https://aclanthology.org/2020.sltu-1.50) (Lee et al., SLTU 2020)
ACL
- John Lee, Tianyuan Cai, Wenxiu Xie, and Lam Xing. 2020. A Counselling Corpus in Cantonese. In Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL), pages 358–361, Marseille, France. European Language Resources association.