CLaC at SMM4H 2020: Birth Defect Mention Detection

Parsa Bagherzadeh, Sabine Bergler


Abstract
For the detection of personal tweets, where a parent speaks of a child’s birth defect, CLaC combines ELMo word embeddings and gazetteer lists from external resources with a GCNN (for encoding dependencies), in a multi layer, transformer inspired architecture. To address the task, we compile several gazetteer lists from resources such as MeSH and GI. The proposed system obtains .69 for μF1 score in the SMM4H 2020 Task 5 where the competition average is .65.
Anthology ID:
2020.smm4h-1.32
Volume:
Proceedings of the Fifth Social Media Mining for Health Applications Workshop & Shared Task
Month:
December
Year:
2020
Address:
Barcelona, Spain (Online)
Editors:
Graciela Gonzalez-Hernandez, Ari Z. Klein, Ivan Flores, Davy Weissenbacher, Arjun Magge, Karen O'Connor, Abeed Sarker, Anne-Lyse Minard, Elena Tutubalina, Zulfat Miftahutdinov, Ilseyar Alimova
Venue:
SMM4H
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
168–170
Language:
URL:
https://aclanthology.org/2020.smm4h-1.32
DOI:
Bibkey:
Cite (ACL):
Parsa Bagherzadeh and Sabine Bergler. 2020. CLaC at SMM4H 2020: Birth Defect Mention Detection. In Proceedings of the Fifth Social Media Mining for Health Applications Workshop & Shared Task, pages 168–170, Barcelona, Spain (Online). Association for Computational Linguistics.
Cite (Informal):
CLaC at SMM4H 2020: Birth Defect Mention Detection (Bagherzadeh & Bergler, SMM4H 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.smm4h-1.32.pdf