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Figure 1: Distribution of human annotation ratings and
computational similarity ratings for homonymic (blue)
and polysemic (orange) sentence pairs, together with
their means.

state size of 768 and 12 attention heads. We i)
extracted and averaged sub-word vectors before
pooling, ii) extracted the embedding of the [CLS]
token, and iii) used the pooled sentence embed-
ding. Lastly, we also determined a primitive con-
textualised sentence embedding by averaging over
the sentence’s token embeddings as derived from
Word2Vec (Mikolov et al., 2013) pretrained on the
Google News Dataset.10

3 Results

We report the collected data in four steps: Firstly,
we inspect to what degree the different metrics
and combinations thereof can predict whether a
pair of target sense interpretations is polysemic or
homonymic. We then investigate the correlation
between the three collected annotation metrics, and

model_doc/bert.html
10https://code.google.com/archive/p/

word2vec/
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Figure 2: Classification of homonym (blue) and poly-
seme (orange) sample pairs based on pairwise similar-
ity annotations and co-predication acceptability judge-
ments.

report how well the computational measures predict
the human annotations. Finally, we move to a more
qualitative analysis, investigating in more detail
the distribution of ratings over the different sense
interpretations of a polyseme.

3.1 Predicting Ambiguity Types

The top two graphs in Figure 1 show the distribu-
tion of human annotations for homonymic (blue)
and polysemic (orange) target words based on
their explicit word sense similarity ratings or co-
predication acceptability, respectively. Both an-
notation measures clearly separate the modes of
the distributions, but while co-predication accept-
ability judgements for the tested polyseme pairs
occupy the entire rating scale, explicit word sense
similarity ratings only span the upper half (the low-
est score is 0.48). Conversely, co-predication ac-
ceptability ratings for homonym pairs reach up to
0.67, while the highest-scoring homonym pair only
reaches a similarity score of 0.44. This impacts
the distribution means, which are closer to each
other in the co-predication metric than in the simi-
larity scores. The computational approaches to rat-
ing word sense similarities overall return relatively
high scores for both, homonym and polyseme pairs,
often only occupying the top 20% of the scale. As
a result, the means of their distributions are signif-
icantly closer, as exemplified by the distributions
of BERT word embedding similarity ratings for
polyseme and homonym pairs in the third graph of
Figure 1. The primitive Word2Vec sentence embed-
dings lastly assign a higher mean similarity score
to homonym pairs than to polysemes (last graph).

Because co-predication acceptability judge-

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


120

Combination Correlation Ordinary Least Squares (OLS) Regression Analysis Prediction
First Measure Second Measure r p Coef. R2 F-stat. Prob. Omnib. Prob. MSE R2

Similarity Acceptability 0.529 2.08E-06 0.910 0.280 26.855 2.08E-06 3.756 0.153 0.040 0.208
Similarity Classification 0.539 1.21E-06 1.091 0.291 28.320 1.21E-06 6.587 0.037 0.057 0.162
Acceptability Similarity 0.529 2.08E-06 0.308 0.280 26.855 2.08E-06 22.297 0.000 0.014 0.149
Acceptability Classification 0.563 3.21E-07 0.662 0.317 32.015 3.21E-07 11.321 0.003 0.050 0.301
Classification Similarity 0.539 1.21E-06 0.267 0.291 28.320 1.21E-06 29.957 0.000 0.014 0.175
Classification Acceptability 0.563 3.21E-07 0.479 0.317 32.015 3.21E-07 6.101 0.047 0.037 0.258
BERT WE Similarity 0.211 0.077 0.762 0.045 3.226 0.077 14.001 0.001 0.018 -0.214
BERT WE Acceptability 0.482 0.000 2.991 0.233 20.936 0.000 21.974 0.000 0.041 0.204
BERT WE Classification 0.221 0.064 1.614 0.049 3.553 0.064 15.446 0.000 0.069 -0.007
BERT CLS Similarity -0.038 0.756 -0.390 0.001 0.097 0.756 12.775 0.002 0.019 -0.298
BERT CLS Acceptability 0.271 0.023 4.832 0.073 5.448 0.023 13.459 0.001 0.049 0.033
BERT CLS Classification 0.051 0.672 1.075 0.003 0.181 0.672 17.604 0.000 0.073 -0.051
BERT SE Similarity -0.007 0.955 -0.067 0.000 0.003 0.955 13.383 0.001 0.020 -0.322
BERT SE Acceptability 0.011 0.929 0.181 0.000 0.008 0.929 14.479 0.001 0.058 -0.162
BERT SE Classification -0.016 0.895 -0.317 0.000 0.018 0.895 17.751 0.000 0.073 -0.067
ELMo WE Similarity 0.295 0.012 1.191 0.087 6.600 0.012 10.325 0.006 0.018 -0.188
ELMo WE Acceptability 0.178 0.138 1.233 0.032 2.257 0.138 13.644 0.001 0.051 -0.015
ELMo WE Classification 0.323 0.006 2.630 0.104 8.022 0.006 14.382 0.001 0.065 0.063
Word2Vec SE Similarity 0.053 0.662 0.085 0.003 0.193 0.662 13.484 0.001 0.020 -0.305
Word2Vec SE Acceptability 0.245 0.039 0.681 0.060 4.423 0.039 16.732 0.000 0.051 -0.006
Word2Vec SE Classification 0.249 0.036 0.813 0.062 4.555 0.036 15.828 0.000 0.070 -0.026

Table 1: Correlations between the three different metrics of word sense similarity based on annotation judgements,
and correlation between computational proxies of word sense similarity as compared to the human judgements.
The first set of columns displays pairwise correlation based on Pearson’s r, the second set shows the key statistics
obtained from their OLS regression, and the third set contains the mean regression scores based on 5-fold cross
validation.

ments show a higher overlap between the distri-
butions of homonym and polyseme ratings than
the similarity ratings, we expect similarity to be
a stronger predictor in classifying target pairs as
either homonyms or polysemes. To validate this
intuition, we classified items through a support
vector machine (SVM) with linear kernel under
five-fold cross-validation. As our dataset is skewed
towards polysemy samples, baseline performance
is an accuracy of 0.825, achieved by assigning all
samples to the polyseme class. Both classification
based on similarity ratings and co-predication rat-
ings outperform this baseline, with an accuracy
of 0.988 for similarity ratings, and 0.895 for co-
predication ratings, respectively. Figure 2 shows
the optimal decision boundary between homonym
samples (blue) and polyseme pairs (orange) calcu-
lated for the two annotation metrics. The higher
overlap in homonym and polyseme ratings indeed
prevents a clear delineation between the two am-
biguity types. None of the computational metrics
manages to outperform the baseline, and consis-
tently apply max-class labels. Neither combining
the two human annotated metrics, nor combining
any of the computational metrics improves their
respective classification performance over the best
individual score.

3.2 Relation Between Different Annotations
of Sense Similarity

In order to establish a measure of correlation be-
tween the three human annotation metrics, we con-
sider all six combinations of metrics and i) calcu-
late their Pearson’s r, ii) perform an ordinary least
squares (OLS) regression, and iii) calculate the
mean squared error (MSE) of OLS predictions un-
der five-fold cross validation. The results of these
calculations are displayed in Table 1, and visualised
in Figure 3. We find a moderate but significant
correlation between the three human annotation
metrics. Similarity judgements and co-predication
acceptability judgements show the lowest corre-
lation in the set (Pearson’s r of 0.529), while ac-
ceptability judgements and categorical class simi-
larity achieve the highest correlation (Pearson’s r
of 0.563). These results indicate that categorical
class boundaries between referent interpretations
might have a more direct influence on whether two
different senses can felicitously be co-predicated
than their graded similarity score. The correlation
graphs in Figure 3 again display the coverage of
judgements obtained for the three human annota-
tion metrics, indicating that class similarity ratings,
like co-predication acceptability, span over the full
scale, while similarity judgements only cover the
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Figure 3: Correlations between polysemic target word pairs based on the three collected judgements of word sense
similarity, together with their best linear fit.

top half. Here however this means that predict-
ing co-predication ratings from similarity scores is
more difficult than the inverse, leading to a higher
error rate in the prediction of low-similarity items,
and an overall higher mean squared error (MSE;
0.014 to 0.04). The same holds for predicting
similarity class labels from similarity judgements,
which is more difficult than predicting similarity
judgements based on class similarity.

3.3 Relation between Computational
Estimates and Human Judgements

The bottom part of Table 1 displays the results of
predicting human judgements of polyseme sense
similarity based on the different computational
proxies. Only seven of the pairwise correlations
are significant, and only the correlation between
BERT contextualised word embeddings and co-
predication acceptability ratings approaches a mod-
erate degree (Pearson’s r of 0.48). We argue that it
was to be expected that the correlation between the
similarity of BERT’s contextualised embeddings
and co-predication acceptability should be higher
than between BERT scores and explicit similarity
ratings, as BERT does not specifically capture the
sense of a target word, but rather the diversity and

type of context it appears in. This way it is easier
to predict whether a combined context as created
by co-predication is natural to occur (and therefore
more felicitous) than to directly predict the targets’
sense similarity. Other notable significant pairs are
ELMo word embeddings and classification simi-
larity (Pearson’s r of 0.32), ELMo and similarity
ratings (r = 0.3), as well as BERT classification
token similarity and co-predication acceptability
(r = 0.27), indicating that BERT and ELMo might
capture slightly different facets of word sense - but,
as indicate above - not in such a way that com-
bining them would improve their performance in
predicting the ambiguity type of a target word pair.

3.4 Qualitative Analysis

While the correlation between explicit similarity
judgements and co-predication acceptability is im-
perfect, our analysis reveals that judgements are
more similar towards the upper end of the rating
scale than at the lower end. To investigate this
observation in more detail, we here analyse poly-
seme newspaper, which provides two samples to
the low-similarity cluster. As mentioned before,
in our experiments we assume that newspaper has
three distinct but related sense interpretations: (1)
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Figure 4: Mean similarity ratings (left, ascending
hatch) and co-predication acceptability ratings (right,
descending hatch) for the nine sense interpretation
pairs of polyseme newspaper. The first three bars repre-
sent same-sense pairs, the other three groups the differ-
ent combinations of cross-sense readings, respectively.

organisation/institution, (2) physical object, and
(3) information/data. Figure 4 shows the mean sim-
ilarity and acceptability ratings for the nine com-
binations of sense interpretations: The first three
bars represent same-sense pairs 11, 22 and 33, the
other three groups the different combinations of
cross-sense pairs. The figure reveals that the three
same-sense pairs receive equally high similarity
and acceptability ratings, but while similarity rat-
ings show a gradual decrease in scores assigned
to cross-sense pairs, the co-predication acceptabil-
ity scores are only gradual for more similar cross-
sense pairs, and drop significantly for less similar
ones. These results indicate that similarity ratings
appear to be a more nuanced, continuous measure
than co-predication acceptability, which can as-
signs extremely low scores for readings deemed to
be infelicitous. A more detailed investigation of the
grouping of polyseme senses and its implications
for the hypothesis of hierarchical sense representa-
tion can be found in Haber and Poesio (2020).

4 Conclusion

The data collected in this study allows for a num-
ber of observations about the role of word sense
similarity in the processing of homonyms and po-
lysemes. On the one hand, graded co-predication
acceptability ratings are shown to be less able to
tell apart samples of homonymic and polysemic
sense pairs than explicit sense similarity ratings.
This supports the growing collection of studies in-
dicating that co-predication might not be as suited
a tool to distinguish different types of lexical ambi-
guity as traditionally assumed. On the other hand,
the collected judgements of word sense similarity

indicate that polyseme sense pairs mis-classified by
co-predication acceptability are overall less similar
to each other than other sense pairs, and signifi-
cantly so than same-sense interpretations. This to
some degree vindicates co-predication as a linguis-
tic test, suggesting that rather than distinguishing
homonyms form polysemes per se, it might be a
coarse indication of the underlying word sense sim-
ilarity.

Our results also provide support for recent
hypotheses suggesting that polyseme representa-
tion in the mental lexicon cannot be fully under-
specified. During data collection, annotators rated
some polysemic sense interpretations to be sig-
nificantly less similar to each other than other
sense pairs, and even rated some of the polyseme
cross-sense co-predication samples as unaccept-
able. This indicates that the interpretations of po-
lysemic words might be grouped based on their
similarity, and only grouped interpretations are
available for cost-free sense shifting and felicitous
co-predication. Because only a single target word
per type of systematic polysemy was tested here,
we cannot ascertain whether sense groupings are
idiosyncratic or systematic across target words of
a certain polysemy type. Data for an analysis of
this question can however easily be obtained by re-
peating our experiments with a larger set of target
words. In a similar vain, we also recommend an
in-depth analysis of irregular or metaphorical poly-
semes, which were omitted in this data collection
effort.

Lastly, investigating the suitability of contex-
tualised language models as proxies for human
word sense similarity judgements, we find that the
tested contextualised embeddings fail to predict
word sense similarity consistently, but that the sim-
ilarities between BERT embeddings show a sig-
nificant correlation with co-predication acceptabil-
ity ratings. We take this finding as evidence that
BERT might create better encodings of complex
contexts than encodings of actual word meaning,
as it seems to perform well in determining whether
contexts can be felicitously combined without con-
sistently determining the similarity of word senses
from these contexts first. We strongly encourage
further research into determining the exact lexical
semantic information available in BERT encodings
in order to shed more light on this issue.
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