@inproceedings{pranesh-shekhar-2020-analysis,
title = "Analysis of Resource-efficient Predictive Models for Natural Language Processing",
author = "Pranesh, Raj and
Shekhar, Ambesh",
editor = "Moosavi, Nafise Sadat and
Fan, Angela and
Shwartz, Vered and
Glava{\v{s}}, Goran and
Joty, Shafiq and
Wang, Alex and
Wolf, Thomas",
booktitle = "Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.sustainlp-1.18",
doi = "10.18653/v1/2020.sustainlp-1.18",
pages = "136--140",
abstract = "In this paper, we presented an analyses of the resource efficient predictive models, namely Bonsai, Binary Neighbor Compression(BNC), ProtoNN, Random Forest, Naive Bayes and Support vector machine(SVM), in the machine learning field for resource constraint devices. These models try to minimize resource requirements like RAM and storage without hurting the accuracy much. We utilized these models on multiple benchmark natural language processing tasks, which were sentimental analysis, spam message detection, emotion analysis and fake news classification. The experiment results shows that the tree-based algorithm, Bonsai, surpassed the rest of the machine learning algorithms by achieve higher accuracy scores while having significantly lower memory usage.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pranesh-shekhar-2020-analysis">
<titleInfo>
<title>Analysis of Resource-efficient Predictive Models for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raj</namePart>
<namePart type="family">Pranesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ambesh</namePart>
<namePart type="family">Shekhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nafise</namePart>
<namePart type="given">Sadat</namePart>
<namePart type="family">Moosavi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vered</namePart>
<namePart type="family">Shwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Wolf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we presented an analyses of the resource efficient predictive models, namely Bonsai, Binary Neighbor Compression(BNC), ProtoNN, Random Forest, Naive Bayes and Support vector machine(SVM), in the machine learning field for resource constraint devices. These models try to minimize resource requirements like RAM and storage without hurting the accuracy much. We utilized these models on multiple benchmark natural language processing tasks, which were sentimental analysis, spam message detection, emotion analysis and fake news classification. The experiment results shows that the tree-based algorithm, Bonsai, surpassed the rest of the machine learning algorithms by achieve higher accuracy scores while having significantly lower memory usage.</abstract>
<identifier type="citekey">pranesh-shekhar-2020-analysis</identifier>
<identifier type="doi">10.18653/v1/2020.sustainlp-1.18</identifier>
<location>
<url>https://aclanthology.org/2020.sustainlp-1.18</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>136</start>
<end>140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analysis of Resource-efficient Predictive Models for Natural Language Processing
%A Pranesh, Raj
%A Shekhar, Ambesh
%Y Moosavi, Nafise Sadat
%Y Fan, Angela
%Y Shwartz, Vered
%Y Glavaš, Goran
%Y Joty, Shafiq
%Y Wang, Alex
%Y Wolf, Thomas
%S Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F pranesh-shekhar-2020-analysis
%X In this paper, we presented an analyses of the resource efficient predictive models, namely Bonsai, Binary Neighbor Compression(BNC), ProtoNN, Random Forest, Naive Bayes and Support vector machine(SVM), in the machine learning field for resource constraint devices. These models try to minimize resource requirements like RAM and storage without hurting the accuracy much. We utilized these models on multiple benchmark natural language processing tasks, which were sentimental analysis, spam message detection, emotion analysis and fake news classification. The experiment results shows that the tree-based algorithm, Bonsai, surpassed the rest of the machine learning algorithms by achieve higher accuracy scores while having significantly lower memory usage.
%R 10.18653/v1/2020.sustainlp-1.18
%U https://aclanthology.org/2020.sustainlp-1.18
%U https://doi.org/10.18653/v1/2020.sustainlp-1.18
%P 136-140
Markdown (Informal)
[Analysis of Resource-efficient Predictive Models for Natural Language Processing](https://aclanthology.org/2020.sustainlp-1.18) (Pranesh & Shekhar, sustainlp 2020)
ACL