
Better Document-Level Machine Translation with Bayes’ Rule

Lei Yu1, Laurent Sartran1, Wojciech Stokowiec1,

Wang Ling1, Lingpeng Kong1, Phil Blunsom1,2, Chris Dyer1

1DeepMind, 2University of Oxford

{leiyu, lsartran, wstokowiec, lingwang, lingpenk, pblunsom,

cdyer}@google.com

Abstract

We show that Bayes’ rule provides an effective

mechanism for creating document translation

models that can be learned from only paral-

lel sentences and monolingual documents—a

compelling benefit because parallel documents

are not always available. In our formulation,

the posterior probability of a candidate transla-

tion is the product of the unconditional (prior)

probability of the candidate output document

and the ‘‘reverse translation probability’’ of

translating the candidate output back into the

source language. Our proposed model uses a

powerful autoregressive language model as

the prior on target language documents, but it

assumes that each sentence is translated inde-

pendently from the target to the source lan-

guage. Crucially, at test time, when a source

document is observed, the document language

model prior induces dependencies between

the translations of the source sentences in the

posterior. The model’s independence assump-

tion not only enables efficient use of available

data, but it additionally admits a practical

left-to-right beam-search algorithm for carry-

ing out inference. Experiments show that our

model benefits from using cross-sentence con-

text in the language model, and it outperforms

existing document translation approaches.

1 Introduction

There have been many recent demonstrations that

neural language models based on transformers

(Vaswani et al., 2017; Dai et al., 2019) are capa-

ble of learning to generate remarkably coherent

documents with few (Zellers et al., 2019) or no

(Radford et al., 2019) conditioning variables.

Despite this apparent generation ability, in prac-

tical applications, unconditional language models

are most often used to provide representations

for natural language understanding applications

(Devlin et al., 2019; Yang et al., 2019; Peters

et al., 2018), and how to use them for conditional

generation applications remains an open question.

Our hypothesis in this work is that Bayes’ rule

provides an effective way to leverage powerful

unconditional document language models to im-

prove a conditional task: machine translation.

The application of Bayes’ rule to transform the

translation modeling problem p(y | x), where y is

the target language, and x is the source language,

has a long tradition and was the dominant para-

digm in speech and language processing for many

years (Brown et al., 1993), where it is often called a

‘‘noisy channel’’ decomposition, by analogy to an

information theoretic conception of Bayes’ rule.

Whereas several recent papers have demon-

strated that the noisy channel decomposition has

benefits when translating sentences one-by-one

(Yu et al., 2017; Yee et al., 2019; Ng et al., 2019),

in this paper we show that this decomposition is

particularly suited to tackling the problem of trans-

lating complete documents. Although using cross-

sentence context and maintaining cross-document

consistency has long been recognized as essen-

tial to the translation problem (Tiedemann and

Scherrer, 2017; Bawden et al., 2018, inter alia),

operationalizing this in models has been challeng-

ing for several reasons. Most prosaically, parallel

documents are not generally available (whereas

parallel sentences are much more numerous),

making direct estimation of document translation

probabilities challenging. More subtly, documents

are considerably more diverse than sentences, and

models must be carefully biased so as not to pick

up spurious correlations.

Our Bayes’ rule decomposition (§2) permits

several innovations that enable us to solve these

problems. Rather than directly modeling the

conditional distribution, we rewrite it as p(y |
x) ∝ p(y) × p(x | y). This changes the learn-

ing problem from estimating a single complex
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conditional distribution to learning two different

distributions: a language model p(y), which

provides unconditional estimates of the output

(in this paper, documents); and p(x | y), which

provides the probability of translating a candidate

output y into the (observed) source document x.

As we will discuss subsequently, although the

problems of estimating p(y | x) and p(x | y)
are formally similar, independence assumptions

made in p(x | y) are less statistically costly than

they might otherwise be since, at test time, we

will be conditioning on x and reasoning about a

posterior distribution over y, which will be jointly

dependent on all (conditionally independent) parts

of x. This statistical fact—which is the same

trick that gives naı̈ve Bayes classifiers their

expressiveness and ease of estimation—permits

us to assume independence between sentence

translations in the reverse translation model, and

therefore to use parallel sentences (rather than

parallel documents) to train it. In the posterior, we

thus have an implicit estimate of a document-level

translation system, even though we made no use

of parallel documents when estimating the prior

or likelihood models. This is particularly useful

because parallel sentences are much more readily

available than parallel documents. A second

benefit of our approach is that the unconditional

language model can be estimated from nonparallel

data, which exists in vast quantities.

Although the noisy channel model is ideal for

exploiting the data resources that naturally exist

in the world (large corpora of parallel but inde-

pendent sentences, and large corpora of mono-

lingual documents), we are faced with a much

harder decoding problem (§3). To address this

problem, we propose a new beam-search algo-

rithm, exploiting the fact that our document lan-

guage model operates left-to-right, and our reverse

translation model treats sentences independently.

The search is guided by a proposal distribution that

provides candidate continuations of a document

prefix, and these are reranked according to the

posterior distribution. In particular, we compare

two proposal models: one based on estimates of

independent sentence translations (Vaswani et al.,

2017) and one that conditions on the source doc-

ument context (Zhang et al., 2018). Although

closely related, our algorithm is much simpler and

faster than that proposed in Yu et al. (2017). Rather

than using a specially designed channel model

(Yu et al., 2016) which is limited in process-

ing long sequences like documents, our condi-

tional sentence independence assumptions allow

us to use any sequence-to-sequence model as the

channel model, making it a better option for

document-level translation.

To explore the performance of our proposed

model, we focus on Chinese–English translation,

following a series of papers on document trans-

lation (Zhang et al., 2018; Werlen et al., 2018;

Tu et al., 2018; Xiong et al., 2019). Although

in general it is unreasonable to expect that inde-

pendent translations of sentences would lead to

coherent translations of documents, the task of

translating Chinese into English poses some

particularly acute challenges. As Chinese makes

fewer inflectional distinctions than English does,

and the relevant clues for predicting, for example,

what tense an English verb should be in, or

whether an English noun should have singular

or plural morphology, may be spread throughout a

document, it is crucial that extra-sentential context

is used.

Our experiments (§4) explore: (1) different

approaches to reranking, (2) different indepen-

dence assumptions when modeling documents

(i.e., whether sentences are generated indepen-

dently or not), (3) different amounts of language

modeling data, and (4) different proposal models.

Briefly summarized, we find that document-

context language models significantly improve the

translation quality obtained with our system, both

in terms of BLEU scores, and in terms of a human

evaluation. Targeted error analysis demonstrates

the document prior is capable of enforcing con-

sistency of tense and number and lexical choice

across documents.

2 Model Description

We define x = (x1,x2, . . . ,xI) as the source

document with I sentences, and similarly, y =

(y1,y2, . . . ,yJ) as the target document with J

sentences. During the (human) translation process,

translators may split or recombine sentences, but

we will assume that I = J .1 Let xi = (xi1, x
i
2,

. . . , xi
M
) represent the ith sentence in the docu-

ment, consisting of M words; likewise yi =
(yi1, y

i
2, . . . , y

i
N
) denote the ith sentence in the

target document, containing N words.

1Size mismatches are addressed by merging sentences

using sentence alignment algorithms (Gale and Church,

1993).
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The translation of a document x is determined

by finding the document ŷ, where p(ŷ | x) is

optimal.

ŷ = arg max
y

p(y | x). (1)

Instead of modeling the probability p(y | x)
directly, we factorize it using Bayes’ rule:

ŷ = arg max
y

p(x | y)× p(y)

p(x)

= argmax
y

p(x | y)
︸ ︷︷ ︸

channel model

× p(y)
︸︷︷︸

language model

.
(2)

We further assume that sentences are indepen-

dently translated, and that the sentences are gener-

ated by a left-to-right factorization according to

the chain rule. Therefore, we have

ŷ ≈ arg max
y

|x|
∏

i=1

p(xi | yi)× p(yi | y<i), (3)

where y<i = (y1, . . . ,yi−1) denotes a docu-

ment prefix consisting of the first i − 1 target

sentences. Thus conceived, this is a generative

model of parallel documents that makes a partic-

ular independence assumption; we illustrate the

corresponding graphical model on the top of

Figure 1.

2.1 Impact of the Conditional Independence

Assumption

At first glance, the conditional independence

assumption we have made might seem to be

the very independence assumption that bedevils

conventional sentence-based approaches to docu-

ment translation—translations of sentence i ap-

pear to be uninfluenced by the translation of any

sentence j 6= i. However, although this is the case

during training, this is not the case at test time.

Then, we will be conditioning on the xi’s (the

source language sentences), and reasoning about

the posterior distribution over the ‘‘underlying’’

yi’s. By conditioning on the child variables, condi-

tional dependencies between all yi’s and between

each yi and all xi’s are created (Shachter, 1998).

The (in)dependencies that are present in the

posterior distribution are shown in the bottom

of Figure 1.

Thus, although modeling p(y | x) or p(x | y)
would appear to be superficially similar, the

Figure 1: Graphical model showing the factorization

of our noisy channel model where yi indicates the ith

target language sentence andxi indicates the ith source

language sentence. In the prior (top) the target sentences

(the yi’s) only influence the corresponding source

sentence and therefore can be learned and modeled

independently, but at test time (bottom), when the

target is not observed, each yi depends on every xi.

statistical impact of making a conditional inde-

pendence assumption is quite different. This
is fortunate, as it makes it straightforward to

use parallel sentences, rather than assuming we

have parallel documents, which are less often

available (Voita et al., 2019b; Zhang et al., 2018;

Maruf et al., 2019, inter alia). Finally, because

we only need to learn to model the likelihood

of sentence translations (rather than document

translations), the challenges of guiding the learners

to make robust generalizations in direct document

translation models (Voita et al., 2019b; Zhang

et al., 2018; Maruf et al., 2019, inter alia) are

neatly avoided.

2.2 Learning

We can parameterize the channel probability p(xi

| yi) using any sequence-to-sequence model and

parameterize the language model p(yi | y<i)
using any language model. It is straightforward to

learn our model: We simply optimize the channel

model and the language model separately on

parallel data and monolingual data, respectively.

We remark that it is a significant practical
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Figure 2: The decoding process. In Phase 1, the auxiliary proposal model generates candidate translations (3

candidates in the diagram) for each sentence in the document (containing 4 sentences). In Phase 2, beam search is

employed to search for the best path from the candidate translations.

advantage of this parameterization that we

can retrain the channel and language models

independently—for example, if we acquire more

monolingual data, or use different language

models with the same channel model conditioned

on the domain of the source text.

3 Decoding

Because of the global dependencies in the poste-

rior distribution, decoding in our model is compu-

tationally complex. On one hand, similar to the

decoding problem faced in standard sequence-to-

sequence models, we must search over the space

of all possible outputs with a model that makes no

Markov assumptions. On the other hand, unlike

traditional models, we have to have a complete

yi before we can compute p(xi | yi), making

greedy and near-greedy algorithms ineffective. To

address this issue, we use an auxiliary proposal

model q(y | x), that approximates the posterior

distribution using a direct model, to focus our

search on promising parts of the output space.

Because of the autoregressive factorization of

the language model (pLM), and the independent

sentence translation assumption in the channel

model (pTM), we can carry out the reranking

process using a left-to-right beam search strategy

with the aid of our proposal model (q). Figure 2

illustrates the decoding process. For an input

document of ℓ sentences, we let the proposal

model propose K candidate translations for each

sentence in the document.2 We then search for

the best document path through this lattice—or

confusion network (Mangu et al., 2000)—of

candidate sentence translations. To do so, we

maintain a beam of the B active hypotheses (i.e.,

when considering the ith sentence, the prefix

consists of i − 1 sentences), and we consider the

proposal’s K one-sentence extensions (which we

write yi). We retain B partial translations from

the K × B candidates according to the following

linear objective,

O(x,y<i,yi) =λ1 log q(y
i | x)+

log pLM(y
i | y<i)+

λ2 log pTM(x
i | yi) + λ3|y

i|+

O(x,y<i−1,yi−1), (4)

where |y| denotes the number of tokens in the

sentence y, and where the base case O(x,y<0,

y0) = 0. Note that Eq. 4 is a generalization of Eq. 3

in log space—if we set λ1 = λ3 = 0 and λ2 = 1
and take the log of Equation 3 the two objectives

are equivalent. The extra factors—the proposal

probability and the length of the output—provide

improvements (e.g., by calibrating the expected

length of the output), and can be incorporated at

no cost in the model; they are widely used in prior

work (Koehn et al., 2007; Yu et al., 2017; Yee

2Our proposal model can optionally use document context

on the source (conditioning) side, but sentences are generated

independently.
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et al., 2019; Ng et al., 2019). The elements on

the beam after considering the ℓth sentence are

reranked one final time by adding log pLM(〈STOP〉 |
y≤ℓ) to the final score; this accounts for the

language model’s assessment that the candidate

document has been appropriately ended.3

4 Experiments

We evaluate our model on two translation tasks,

the NIST Open MT Chinese–English task4 and the

WMT19 Chinese–English news translation task.5

On both tasks, we use the standard parallel training

data, and compare our model with a strong

transformer baseline, as well as related models

from prior work.

4.1 Dataset Description

The NIST training data is composed from LDC-

distributed news articles and broadcast transcripts

andconsistsof 1.5Msentence pairs. The document-

level parallel corpus is a subset of the full train-

ing set, including 55K documents with 1.2M

sentences. Following prior work, we use the MT06

dataset as validation set and MT03, MT04, MT05,

and MT08 as test sets. There are 79 documents and

1,649 sentences in the validation set and in total

509 documents and 5,146 sentences in the test set.

On average, documents in the test set has 10 sen-

tences, and 250 words and 330 words on the

Chinese and English sides, respectively. We pre-

process the dataset by doing punctuation normali-

zation, tokenization, and lower-casing. We use

byte pair encoding (Sennrich et al., 2016b) with

32K merges to segment words into sub-word units

for both Chinese and English. The evaluation

metric is case-insensitive BLEU calculated using

multi-bleu.perl, which is consistent with

prior work on this task.

The training data for the WMT19 Chinese–

English task includes the UN corpus, CWMT, and

news commentary. The total number of sentence

pairs is 18M after filtering the data by removing

duplicate sentences and sentences longer than 250

words. The validation sets that we use in the

experiment are newstest2017 and newstest2018,

3When sentences are modeled independently, this quantity

is constant and can be ignored.
4https://www.nist.gov/itl/iad/mig/open-

machine-translation-evaluation.
5http://www.statmt.org/wmt19/translation-

task.html.

which contains 169 documents, 2,001 sentences

and 275 documents, 3,981 sentences, respectively.

The test set is newstest2019, containing 163 docu-

ments and 2,000 sentences. On average, docu-

ments in the test set have 12 sentences, and

360 words and 500 words on the Chinese and

English sides, respectively. The dataset is

preprocessed by segmenting Chinese sentences

and normalizing punctuation, tokenizing, and true-

casing English sentences. As for NIST, we learn

a byte pair encoding (Sennrich et al., 2016b) with

32K merges to segment words into sub-word units

for both Chinese and English. The evaluation

metric is sacreBLEU (Post, 2018).

4.2 Model Configuration

For NIST, we use the transformer (Vaswani et al.,

2017) as the channel model and the document

transformer (Zhang et al., 2018) as the proposal

model. The hyperparameters for training the

transformer are the same as transformer base

(Vaswani et al., 2017), that is, 512 hidden size,

2,048 filter size, 8 attention heads, and 6 layers for

both the encoder and decoder. We follow Zhang

et al. (2018)’s configuration to train the document

transformer: Context length is set to 2 and all

other hyperparameters are the same as transformer

base. Both models are optimized using Adam

(Kingma and Ba, 2015) with approximately 24K

BPE tokens per mini-batch. For the language

model, we train the transformer-XL (Dai et al.,

2019) on a combination of the English side of

NIST training data as well as three sections of

Gigaword: XIN, AFP, APW, resulting in a total

of 7.3M documents and 115M sentences. We use

an architecture with 24 layers, 16 attention heads,

and embeddings of dimension 1024. The input

sequences to the language model are encoded into

bytes using the byte-level encoder provided by

GPT2 (Radford et al., 2019).

For WMT19, we use the transformer as both the

channel and proposal model. The hyperparameters

for training the transformer is the same as

transformer big (Vaswani et al., 2017), namely,

1,024 hidden size, 4,096 filter size, 16 attention

heads, and 6 layers. The model is trained on 8

GPUs with batch size of 4,096. The setup for

the language model is the same as that of NIST

except that the training data is the English side of

the parallel training data and Gigaword.
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Method Model Proposal MT06 MT03 MT04 MT05 MT08

(Wang et al., 2017) RNNsearch – 37.76 – – 36.89 27.57

(Kuang et al., 2017) Transformer + cache – 48.14 48.05 47.91 48.53 38.38

(Zhang et al., 2018) Doc-transformer – 49.69 50.21 49.73 49.46 39.69

Baseline

Sent-transformer – 47.72 47.21 49.08 46.86 40.18

Doc-transformer (q) – 49.79 49.29 50.17 48.99 41.70

Backtranslation (q′) – 50.77 51.80 51.61 51.81 42.47

Sent-reranker q 51.33 52.23 52.36 51.63 43.63

This work
Doc-reranker q 51.99 52.77 52.84 51.84 44.17

Doc-reranker q′ 53.63 54.51 54.23 54.86 45.17

Table 1: Comparison with prior work on NIST Chinese–English translation task. The evaluation

metric is tokenized case-insensitive BLEU. The first three rows are numbers reported in the papers

of prior work. The first two baselines are the results that we obtained by running the transformer

(Vaswani et al., 2017) and the document transformer (Zhang et al., 2018) on the NIST dataset.

The sent-reranker is a variation of our model in which sentences in documents are assumed to be

independent. The backtranslation baseline is obtained by training the document transformer using

additional synthetic parallel documents generated by backtranslation.

For both tasks, the weights λ are selected using

grid search, from [0.8, 1., 1.5, 2., 2.2, 2.5, 3.] for

the weights of channel model λ2 and proposal

model λ1, and from [0.2, 0.5, 0.8, 1.] for the length

penalty λ3. The size of the n-best list used in the

reranker is set to K = 50.6 The beam size in the

document decoding algorithm is B = 5.

The running time for our decoding algorithm

(Section 3) highly depends on the language

model’s speed of calculating probabilities of

partial documents. Using the transformer-

XL language model with the aforementioned

configuration, it takes approximately 90 seconds

to decode a document on a Google Cloud TPU

v3. We leave systematic exploration of inference

algorithms for better solving the decoding problem

to future work.

4.3 Experimental Results

Table 1 presents the best result from our model

(doc-reranker) in comparison with prior work on

the NIST Chinese–English translation task. The

first three rows are numbers reported in prior

work. Wang et al. (2017) incorporate document

context by introducing a hierarchical RNN to an

LSTM sequence-to-sequence model. Kuang et al.

(2017) use a cache to store previously translated

6
K = 50 gives the best compromise between performance

and inference time.

words across sentences, which they then use in

sequence-to-sequence models. Zhang et al. (2018)

extend the transformer model with an extra context

encoder to capture information from previous

source sentences. Apart from prior work, we also

compare our doc-reranker with four baselines:

the transformer (Vaswani et al., 2017), document

transformer (Zhang et al., 2018), the sentence-

level reranker (sent-reranker), and the document

transformer with backtranslation.

In the sent-reranker, we assume sentences in

the document are independent (formulation ŷ =

arg maxy
∏|x|

i=1 p(x
i | yi)×p(yi)), and therefore

we train a sentence-level language model and

rerank each sentence independently. This sent-

reranker setup is close to the work from Yee et al.

(2019) and Ng et al. (2019) with the difference

that rather than using a language model trained on

documents we use a language model trained on

sentences, which is more statistically consistent.

Table 1 shows that our reranker outperforms

previous models as well as strong transformer

baselines by a significant margin—approximately

2.5 BLEU on all test sets—achieving new state of

the art. Although the gap between the doc-reranker

and sent-reranker is smaller, as we will show in

§A.1 and §5.2 that translations generated by doc-

reranker are preferred by humans and are more

consistent across documents, in line with concerns
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Proposal model Language model Sent-reranker Doc-reranker

Sent-transformer

LSTM: NIST 49.92 50.24

transformer-XL: NIST 50.29 50.56

transformer-XL: NIST + Gigaword 50.19 50.93

Doc-transformer

LSTM: NIST 50.75 51.20

transformer-XL: NIST 51.27 51.68

transformer-XL: NIST + Gigaword 51.33 51.99

Table 2: BLEU scores on NIST dev set MT06 from rerankers which are incorporated with

various language models. In the language model column X: Y means the language model

X is trained on dataset Y. A bigger language model improves the doc-reranker but does

not help the sent-reranker.

Figure 3: Effect of n-best list.

about the reliability of using BLEU at assessing

cross-sentential consistency (Voita et al., 2019b).

To compare the effectiveness of leveraging

monolingual data between backtranslation

(Edunov et al., 2018; Sennrich et al., 2016a) and

our model, we train the document transformer

(Zhang et al., 2018) using additional synthetic

parallel documents generated by backtranslation

(q′). For fair comparison we use the same

monolingual data for both models. As shown

in Table 1, although both techniques improve

translation, backtranslation is less effective than

our model. Because we have a new model q′,

we can use it as a proposal model for our

doc-reranker—effectively using the monolingual

data twice. We find that this improves results

even further, indicating that the effect of both

approaches is additive.

To understand the rerankers better, we

investigate the effect of different proposal models,

different language models, and various numbers of

Architecture Data PPL

transformer-XL NIST sent 83.3

transformer-XL NIST + GW sent 96.5

LSTM NIST doc 71.6

transformer-XL NIST doc 43.8

transformer-XL NIST + GW doc 43.4

Table 3: Perplexity per word of language

models on NIST dev set. GW refers to

Gigaword.

candidates in the n-best list. Table 2 and Figure 3

show that better proposal models and bigger n-

best lists lead to consistently better reranking

results. This is an appealing behavior showing

that our reranker is able to pick better translations

from higher quality and more diverse candidate

pools generated by better proposal models and

bigger n-best lists. To compare the effect of

language models, we train an LSTM language

model (Merity et al., 2018b,a) and a transformer-

XL language model on the English side of

NIST parallel training data in addition to the

transformer-XL trained on NIST and Gigaword.

Table 3 lists the perplexity per word on the

NIST validation set for different language models.

Given the same training data, the transformer-XL

performs significantly better than the LSTM-

based language model, which in turn results in

a higher BLEU score from the doc-reranker. By

adding more training data, the transformer-XL

language model achieves even lower perplexity

and that gives a further boost to the performance

of the doc-reranker. Notably, when the strong

transformer-XL language model is incorporated

352



Reranker Models MT06

– Doc-transformer 49.79

Doc-reranker

Proposal + LM 49.79

Channel + LM 51.93

Proposal + Channel 50.40

Proposal + Channel + LM 51.99

Table 4: Effect of different components.

into the doc-reranker, the best weight ratio of the

channel and language model is 1:1, indicating that

the doc-reranker depends heavily on the language

model. By contrast, if a weak language model is

incorporated, the best ratio is approximately 2 : 1.

A further observation is that although a larger-

scale language model improves the doc-reranker,

it does not help the sent-reranker.

We perform an ablation study to explore what

each component of the doc-reranker contributes

to the overall performance. Table 4 shows BLEU

scores on the NIST validation set for the optimal

interpolation of various component models. No

gains are observed if the language model is

combined with the proposal model (a probabi-

listically unsound combination, although one

that often worked in pre-neural approaches to

statistical translation). We find that as we increase

the weight of the language model, the results

become worse. The interpolation of the proposal

model and channel model slightly outperforms

the proposal model baseline but considerably

underperforms the interpolation of the proposal

model, channel model, and the language model.

This difference indicates the key roles that the

language model plays in the doc-reranker. When

the channel model is combined with the language

model the performance of the doc-reranker is

comparable to that with all three components

included. We conclude from the ablation study

that both the channel and language models are

indispensable for the doc-reranker, indicating

that Bayes’ rule provides reliable estimates of

translation probabilities.

Table 5 presents the results of our model

together with baselines on the WMT19 Chinese–

English translation task. We find that the results

follow the same pattern as those on NIST: A

better language model leads to better translation

results and overall the reranker outperforms the

transformer-big by approximately 2.5 BLEU.

The two best systems submitted to the WMT19

Chinese–English translation task are Microsoft

Research Asia’s system (Xia et al., 2019) and

Baidu’s system (Sun et al., 2019), both of which

use multiple techniques to improve upon the

transformer big model. Here, we mainly compare

our results with those from Xia et al. (2019)

because we use the same evaluation metric

SacreBLEU (Post, 2018) and the same validation

and test sets. Using extra parallel training data and

the techniques of masked sequence-to-sequence

pretraining (Song et al., 2019), sequence-level

knowledge distillation (Kim and Rush, 2016),

and backtranslation (Edunov et al., 2018), the

best model from Xia et al. (2019) achieves 30.8,

30.9, and 39.3 on newstest2017, newstest2018,

and newstest2019, respectively. Although our best

results are lower than this, it is notable that our

model achieves comparable results to their model,

which was trained on 56M sentences of parallel

data—over two times more training data than we

use. However, our method is orthogonal to these

works and can be combined with other techniques

to make further improvement.

5 Analysis

In this section, we present the quantitative and

qualitative analysis of our models. The analysis is

performed on the experiments of the NIST dataset.

5.1 Quantitative Analysis

We do oracle experiments in order to assess our

models’ ability to select good translation candi-

dates. We create our candidate pool by mixing the

proposals generated from the transformer model

(Vaswani et al., 2017) and the four references.

We subsequently calculate how many cases over

the entire validation dataset in which different

models (the proposal model, sent-reranker, and

doc-reranker) assign the highest model scores to

the reference translations. As shown in Figure 4,

while the proposal model selects one of the

references as the best candidate for 22% of the

sentences in the validation dataset, both rerankers

double the ratio and the doc-reranker achieves

2% higher accuracy than the sent-reranker. This

observation provides further evidence that if we

improve the quality of the candidate pool our

model will generate better translations.
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Method Model Unpaired Data LM PPL Test17 Test18 Test19

Baseline transformer big – – 23.9 23.9 24.5

This work Doc-reranker
WMT 106.3 24.9 26.0 27.1

Gigaword + WMT 63.8 25.5 26.3 27.1

Table 5: SacreBLEU of different models on WMT19 validation and test sets

and perplexity per word of the language models on the English side of WMT19

validation set.

Figure 4: Ratio of different models picking true targets.

We also assess the diversity of the candidate

pool and investigate the effect of their diversity on

our model’s performance. Table 6 lists pairwise-

BLEU7 scores (Shen et al., 2019) of different

candidate pools (of size 50) and their corres

ponding BLEU scores from the doc-reranker. We

use the document transformer (Zhang et al., 2018)

trained with additional backtranslated synthetic

documents as the proposal models (q′ in Table 1)

in the doc-reranker. Table 6 shows that the

candidates generated from our proposal model (by

taking 50 best sentences from the beam search)

are much less diverse than human translations.

We conjecture that the lack of diversity in the

candidate pool may harm the performance of our

model.

To increase the diversity of candidate trans-

lations, we create candidate pools by composing

translations generated from different ‘‘experts’’,

which are simply document transformer models

trained from different random initializations. As

7Pairwise-BLEU (Shen et al., 2019) is a metric of

measuring the similarity of candidate translations. The

lower the pairwise-BLEU is, the more diverse the candidate

translations are. We refer the readers to Shen et al. (2019) for

the definition of the metric.

Proposal #Experts pBLEU BLEU

human 4 21.40 –

Doc-transformer

1 70.41 53.63

2 59.09 54.70

4 53.54 55.21

Table 6: Pairwise-BLEU (pBLEU) (Shen

et al., 2019) for candidate translations

generated from different number of experts.

BLEU from the doc-reranker taking

different sets of candidate translations.

We obtain different experts by train-

ing the document transformer (Zhang et al.,

2018) with backtranslation with different

random initialization. The size of the

candidate pool is 50. The experts for the

human proposal baseline are the reference

translations.

illustrated in Table 6, we find that a candidate

pool from more experts results in more diverse

translations (quantified by pairwise BLEU) and

better reranking results (quantified by BLEU).

5.2 Qualitative Analysis

To investigate how the rerankers improve trans-

lation quality, we analyze the output from dif-

ferent models: The document transformer (Zhang

et al., 2018) (our proposal model), the sent-

reranker, and the doc-reranker. We observe that

in general the doc-reranker improves adequacy

of translations and can generate more fluent and

natural sentences compared with the document

transformer. More importantly, our doc-reranker

shows its superiority over the others in terms of ex-

ploiting context, improving consistency of tense,

number, and lexical choice across entire articles.

Tables 7 and 8 in Appendix A present ex-

ample output from the aforementioned systems.
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In Example 1, the pronoun he is omitted

in the Chinese sentence. While the document

transformer misses this pronoun resulting in a

translation of completely different meaning, the

doc-reranker is able to recover it. Likewise, in

Example 6 them is dropped in the source sentence

and this pronoun can only be inferred from

previous context. Although both rerankers recover

some pronoun, only the doc-reranker gets it right,

by relying on cross-sentential context. Example 2

is a good example showing that the doc-reranker is

better at generating adequate translations than the

proposal model: the document transformer ignores

the phrase with these people, but the doc-reranker

covers it.
Chinese does not mark nouns for number, and

it therefore has to be inferred from context to

generate accurate English translations. It is not

possible for a sentence-level MT system to capture

this information if the relevant context is not from

the current sentence. In Example 3 and 5 the

plural problems and identities can only be inferred

from previous sentences (the immediate previous

sentence in Example 3 and the sentence 4-5

sentences away from the current one in Example 5).

While neither the document transformer nor the

sent-reranker makes the right predictions in both

examples, the doc-reranker translates correctly,

indicating its strength in capturing extra-sentential

information. In addition to making inference

across sentences, the doc-reranker is also capable

of maintaining consistency of tense and lexical

choice, as demonstrated in Examples 4, 7, and

9. Furthermore, it improves the consistency of

writing style. To illustrate, in Example 8, the

context is that of a list of bullet points starting

with continue. The doc-reranker follows in this

style by starting the translation with the verb

continue. However, the sent-reranker starts the

sentence with we should continue. Although both

translations are reasonable, the former one is more

natural within the document since it preserves

stylistic consistency.

6 Related Work

Our work is closely related to three lines of

research: context-aware neural machine transla-

tion, large-scale language models for language

understanding, and semi-supervised machine

translation. Recent studies (Tiedemann and

Scherrer, 2017; Bawden et al., 2018, inter alia)

have shown that exploiting document-level con-

text improves translation performance, and in

particular improves lexical consistency and coher-

ence of the translated text. Existing work in the

area of context-aware NMT typically adapts the

MT system to take additional context as input,

either a few previous sentences (Jean et al., 2017;

Wang et al., 2017; Tu et al., 2018; Voita et al.,

2018; Zhang et al., 2018; Werlen et al., 2018) or

the full document (Haffari and Maruf, 2018; Maruf

et al., 2019). These methods vary in the method

of encoding the additional context and the way of

integrating the context with the existing sequence-

to-sequence models. For example, Werlen et al.

(2018) encode the context with a separate trans-

former encoder (Vaswani et al., 2017) and use a

hierarchical attention model to integrate the con-

text into the rest of transformer model. Zhang et al.

(2018) introduce an extra self-attention layer in

the encoder to attend over the the context.
Strategies for exploiting monolingual document-

level data have been explored in two recent stud-

ies (Voita et al., 2019a; Junczys-Dowmunt, 2019).

Both use backtranslation (Edunov et al., 2018;

Sennrich et al., 2016a) to create synthetic parallel

documents as additional training data. In contrast,

we train a large-scale language model and use

it to refine the consistency between sentences

under a noisy channel framework. Advantages

of our model over back-translation are that 1)

the language model is portable across domain

and language pairs; 2) our model involves

straightforward training procedures. Specifically,

for backtranslation to succeed, monolingual data

that will be back-translated must be carefully

selected; the ratio of backtranslated data and

original data must be balanced carefully. While

techniques for doing this are fairly well established

for single sentence models, no such established

techniques exist for documents.

More generally, strategies for using monolin-

gual data in nueral MT systems is an active

research area (Gülçehre et al., 2015; Cheng et al.,

2016, inter alia). Backtranslation (Edunov et al.,

2018; Sennrich et al., 2016a), originally invented

for semi-supervised MT, has been used as a stan-

dard approach for unsupervised MT (Lample et al.,

2018a,b; Artetxe et al., 2019, 2018). Noisy channel

decompositions have been a standard approach in

statistical machine translation (Brown et al., 1993;

Koehn et al., 2007) and recently have been applied

to neural models (Yu et al., 2017; Yee et al., 2019;
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Ng et al., 2019). Unlike prior work, we adopt noisy

channel models for document-level MT. While the

model from Yu et al. (2017) could be used on doc-

uments by concatenating their sentences to form a

single long sequence, this would not let us use the

conditional sentence independence assumptions

that gives our model the flexibility to use just

parallel sentences. Secondarily, their inference

algorithm is specialized to their channel model,

and it has a quadratic complexity, which would

be prohibitive for sequence longer than a single

sentence; in practice our inference technique is

much faster.

Large-scale pretrained language models have

achieved success in improving systems in lan-

guage understanding, leading to state-of-the-art

results on a wide range of tasks (Peters et al., 2018;

Devlin et al., 2019; Radford et al., 2018; McCann

et al., 2017; Yang et al., 2019; Chronopoulou et al.,

2019; Lample and Conneau, 2019). Language

generation is another area where pretrained lan-

guage models have been applied, with existing

work focusing on fine-tuning for repurposing an

unconditional language model (Zhang et al.,

2019; Edunov et al., 2019; Song et al., 2019;

Dong et al., 2019; Ziegler et al., 2019;

de Oliveira and Rodrigo, 2019). In contrast to

our work, which uses probabilities from lan-

guagemodels, that work uses model internal

representations.

7 Conclusion

We have presented a noisy channel reranker and

empirically validated it on Chinese–English

document-level translation tasks. The noisy

channel formulation requires only parallel sen-

tences (rather than documents) but we can use

abundant monolingual documents to train the

language model component. Experiments show

that our proposed model considerably improves

translation quality—it achieves approximately

2.5 BLEU higher than transformer baselines.

Subjective evaluation further confirms that

the language model helps enforce consistency

of tense, number, and lexical choice across

documents.

A Appendix

A.1 Human Evaluation

We selected 50 translation triplets (reference

translation, translation from the doc-reranker,

translation from the sent-reranker) sampled from

the validation and test sets of NIST for evaluation

by four native English speakers. The samples are

selected by taking the triplets where the output

from the sent-reranker and the doc-reranker have

a translation edit rate (Snover et al., 2006) above

17.5%.

Each of these documents was presented with

a reference translation, and with two translations,

labeled A and B, one generated by the doc-reranker

and one generated by the sent-reranker. They

were tasked with indicating which of these two

they found better overall, considering fluency,

idiomaticness and correctness (relatively to the

reference).

Each of the human evaluators preferred a majo-

rity of doc-reranker translations. When aggregated

for each document by majority vote, the doc-

reranker translations were considered better in

25 documents, worse for 13, and tied for 12. A

statistically significant preference at p < 0.05
according to an exact one-tailed Binomial test

(n = 38).

A.2 Comparison of Output from Different

Systems

To investigate how the rerankers improve

translation quality, we manually inspect the

output from three different systems: the document

transformer (Zhang et al., 2018), the sent-

reranker, and the doc-reranker. Tables 7 and 8

present the comparison between the output from

the document transformer (Zhang et al., 2018)

and sent-reranker and between the output from

sent-reranker and doc-reranker, respectively. In

general, we find that the doc-reranker outperforms

other systems in terms of maintaining consistency

of tense, number, and lexical choices across

documents. For detailed analysis, we refer readers

to §5.2.
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1 src: 霍夫曼在接受美国哥伦比亚广播公司新闻杂志「六十分钟」访问时轻叹,那段时期为了得到毒品和酒,真

是不择手段。
ref: in an interview on us cbs news magazine 60 minutes, hoffman softly sighed that in such period he would truly

do anything to get drugs and alcohol.

out1: in an interview with the cbs news magazine ‘‘60 minutes", hoffmann sighed that those days were really

unscrupulous in getting drugs and alcohol.

out2: in an interview with the cbs news magazine ‘‘60 minutes", hoffmann sighed that at that time in order to obtain

drugs and alcohol, he was really unscrupulous.

2 ref: in the meantime, more than 10 chinese personnel working in the same place with these people have been called

back to karachi. at present they are emotionally stabilized.

out1: at the same time, more than ten chinese personnel working at the same site have also withdrawn to karachi. their

sentiments are now stable.

out2: at the same time, more than ten chinese personnel working with these people on the same site have also

withdrawn to karachi. at present, their sentiments are stable.

3 src: 基本的问题是什么呢?

cxt: . . . however, legislator yeung, i wish to tell you what i am doing today is to ensure every matter can proceed

smoothly after the political review starts. therefore, we have to solve some basic problems first and this is a

different thing all together.

ref: what are the basic problems?

out1: what is the basic problem?

out2: what are the basic questions?

4 cxt: sword of justice: prospects for 2006

ref: author: sword of justice

out1: author: the sword of righteousness

out2: author: the sword of justice

Table 7: Example outputs from the document transformer (out1) and our doc-reranker (out2).

5 src: 同时我们在国内用最短的时间，核实清楚了死亡人员的身份。
cxt: . . . the criminal used a submachine gun to fire a barrage of shots, and three engineers died unfortunately. . . .

ref: at the same time, we in china verified the identities of the dead within the shortest possible time.

out1: at the same time, we spent the shortest time in china to verify the identity of the deceased.

out2: at the same time, we spent the shortest time in china to verify the identities of the deceased.

6 src: 现在又要平安的送到家里。
cxt: . . . when the plane carrying the three survivors and 11 other personnel arrived in Hefei, people waiting at the

airport heaved a long sigh of relief. . . . after the incident occurred, it made proper arrangements for them.

ref: now they will also be escorted home safely.

out1: now they have to send it home safely.

out2: now they want to send them safely to their homes.

7 cxt: . . . a traffic accident occurred at the 58 kilometer point of the beijing-harbin highway, with a spill from an oil

tanker leading to the closure of a section of the highway. . . . it was learned that the oil tanker contained waste

oil from charcoal production. . . .

ref: the section of the highway from harbin to shuangcheng was closed, with many vehicles detoured.

out1: part of the roads heading towards shuangcheng in harbin are closed, and many vehicles are bypassing.

out2: part of the road from harbin to shuangcheng was closed , and many vehicles were bypassing.

8 cxt: . . . with regard to coalmine safety this year, saws will effectively carry out the following three tasks: –continue

to effectively tackle the tough issue of controlling methane. . . .

ref: – continue to effectively tackle the tough issue of restructuring and shutting down.

out1: – we should continue to make a success of the rectification and closure battle.

out2: – continue to fight the battle of rectification and closure.

9 cxt: . . . first, such abuse of ‘‘quota" restricts the thorough implementation of world trade organization’s free trade

principle. on one hand, u.s. is talking in high-sounding tone about ‘‘free trade". on the other hand, it re-establishes

trade barriers and stabs your back at will with ‘‘quotas". does it appear too arbitrary and unfair?

ref: second, ‘‘quota" limits the nice growth trend in sino-america trade relation.

out1: second, the ‘‘restriction" restricts the good development momentum of sino-us economic and trade relations.

out2: second, the ‘‘quota" restricts the good development momentum of sino-us economic and trade relations.

Table 8: Example outputs from the sent-reranker (out1) and the doc-reranker (out2). cxt refers to context.
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