@inproceedings{vargas-vieyra-etal-2020-joint,
title = "Joint Learning of the Graph and the Data Representation for Graph-Based Semi-Supervised Learning",
author = "Vargas-Vieyra, Mariana and
Bellet, Aur{\'e}lien and
Denis, Pascal",
editor = "Ustalov, Dmitry and
Somasundaran, Swapna and
Panchenko, Alexander and
Malliaros, Fragkiskos D. and
Hulpu{\textcommabelow{s}}, Ioana and
Jansen, Peter and
Jana, Abhik",
booktitle = "Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.textgraphs-1.4",
doi = "10.18653/v1/2020.textgraphs-1.4",
pages = "35--45",
abstract = "Graph-based semi-supervised learning is appealing when labels are scarce but large amounts of unlabeled data are available. These methods typically use a heuristic strategy to construct the graph based on some fixed data representation, independently of the available labels. In this pa- per, we propose to jointly learn a data representation and a graph from both labeled and unlabeled data such that (i) the learned representation indirectly encodes the label information injected into the graph, and (ii) the graph provides a smooth topology with respect to the transformed data. Plugging the resulting graph and representation into existing graph-based semi-supervised learn- ing algorithms like label spreading and graph convolutional networks, we show that our approach outperforms standard graph construction methods on both synthetic data and real datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vargas-vieyra-etal-2020-joint">
<titleInfo>
<title>Joint Learning of the Graph and the Data Representation for Graph-Based Semi-Supervised Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Vargas-Vieyra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélien</namePart>
<namePart type="family">Bellet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pascal</namePart>
<namePart type="family">Denis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Ustalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Panchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fragkiskos</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Malliaros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioana</namePart>
<namePart type="family">Hulpu\textcommabelows</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhik</namePart>
<namePart type="family">Jana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Graph-based semi-supervised learning is appealing when labels are scarce but large amounts of unlabeled data are available. These methods typically use a heuristic strategy to construct the graph based on some fixed data representation, independently of the available labels. In this pa- per, we propose to jointly learn a data representation and a graph from both labeled and unlabeled data such that (i) the learned representation indirectly encodes the label information injected into the graph, and (ii) the graph provides a smooth topology with respect to the transformed data. Plugging the resulting graph and representation into existing graph-based semi-supervised learn- ing algorithms like label spreading and graph convolutional networks, we show that our approach outperforms standard graph construction methods on both synthetic data and real datasets.</abstract>
<identifier type="citekey">vargas-vieyra-etal-2020-joint</identifier>
<identifier type="doi">10.18653/v1/2020.textgraphs-1.4</identifier>
<location>
<url>https://aclanthology.org/2020.textgraphs-1.4</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>35</start>
<end>45</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Learning of the Graph and the Data Representation for Graph-Based Semi-Supervised Learning
%A Vargas-Vieyra, Mariana
%A Bellet, Aurélien
%A Denis, Pascal
%Y Ustalov, Dmitry
%Y Somasundaran, Swapna
%Y Panchenko, Alexander
%Y Malliaros, Fragkiskos D.
%Y Hulpu\textcommabelows, Ioana
%Y Jansen, Peter
%Y Jana, Abhik
%S Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)
%D 2020
%8 December
%I Association for Computational Linguistics
%C Barcelona, Spain (Online)
%F vargas-vieyra-etal-2020-joint
%X Graph-based semi-supervised learning is appealing when labels are scarce but large amounts of unlabeled data are available. These methods typically use a heuristic strategy to construct the graph based on some fixed data representation, independently of the available labels. In this pa- per, we propose to jointly learn a data representation and a graph from both labeled and unlabeled data such that (i) the learned representation indirectly encodes the label information injected into the graph, and (ii) the graph provides a smooth topology with respect to the transformed data. Plugging the resulting graph and representation into existing graph-based semi-supervised learn- ing algorithms like label spreading and graph convolutional networks, we show that our approach outperforms standard graph construction methods on both synthetic data and real datasets.
%R 10.18653/v1/2020.textgraphs-1.4
%U https://aclanthology.org/2020.textgraphs-1.4
%U https://doi.org/10.18653/v1/2020.textgraphs-1.4
%P 35-45
Markdown (Informal)
[Joint Learning of the Graph and the Data Representation for Graph-Based Semi-Supervised Learning](https://aclanthology.org/2020.textgraphs-1.4) (Vargas-Vieyra et al., TextGraphs 2020)
ACL