@inproceedings{hussain-etal-2020-german,
title = "{G}erman-{A}rabic Speech-to-Speech Translation for Psychiatric Diagnosis",
author = {Hussain, Juan and
Mediani, Mohammed and
Behr, Moritz and
Cheragui, M. Amin and
St{\"u}ker, Sebastian and
Waibel, Alexander},
editor = "Zitouni, Imed and
Abdul-Mageed, Muhammad and
Bouamor, Houda and
Bougares, Fethi and
El-Haj, Mahmoud and
Tomeh, Nadi and
Zaghouani, Wajdi",
booktitle = "Proceedings of the Fifth Arabic Natural Language Processing Workshop",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wanlp-1.1",
pages = "1--11",
abstract = "In this paper we present the natural language processing components of our German-Arabic speech-to-speech translation system which is being deployed in the context of interpretation during psychiatric, diagnostic interviews. For this purpose we have built a pipe-lined speech-to-speech translation system consisting of automatic speech recognition, text post-processing/segmentation, machine translation and speech synthesis systems. We have implemented two pipe-lines, from German to Arabic and Arabic to German, in order to be able to conduct interpreted two-way dialogues between psychiatrists and potential patients. All systems in our pipeline have been realized as all-neural end-to-end systems, using different architectures suitable for the different components. The speech recognition systems use an encoder/decoder + attention architecture, the text segmentation component and the machine translation system are based on the Transformer architecture, and for the speech synthesis systems we use Tacotron 2 for generating spectrograms and WaveGlow as vocoder. The speech translation is deployed in a server-based speech translation application that implements a turn based translation between a German speaking psychiatrist administrating the Mini-International Neuropsychiatric Interview (M.I.N.I.) and an Arabic speaking person answering the interview. As this is a very specific domain, in addition to the linguistic challenges posed by translating between Arabic and German, we also focus in this paper on the methods we implemented for adapting our speech translation system to the domain of this psychiatric interview.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hussain-etal-2020-german">
<titleInfo>
<title>German-Arabic Speech-to-Speech Translation for Psychiatric Diagnosis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Hussain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Mediani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moritz</namePart>
<namePart type="family">Behr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">Amin</namePart>
<namePart type="family">Cheragui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Stüker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Waibel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Arabic Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Imed</namePart>
<namePart type="family">Zitouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="family">Abdul-Mageed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present the natural language processing components of our German-Arabic speech-to-speech translation system which is being deployed in the context of interpretation during psychiatric, diagnostic interviews. For this purpose we have built a pipe-lined speech-to-speech translation system consisting of automatic speech recognition, text post-processing/segmentation, machine translation and speech synthesis systems. We have implemented two pipe-lines, from German to Arabic and Arabic to German, in order to be able to conduct interpreted two-way dialogues between psychiatrists and potential patients. All systems in our pipeline have been realized as all-neural end-to-end systems, using different architectures suitable for the different components. The speech recognition systems use an encoder/decoder + attention architecture, the text segmentation component and the machine translation system are based on the Transformer architecture, and for the speech synthesis systems we use Tacotron 2 for generating spectrograms and WaveGlow as vocoder. The speech translation is deployed in a server-based speech translation application that implements a turn based translation between a German speaking psychiatrist administrating the Mini-International Neuropsychiatric Interview (M.I.N.I.) and an Arabic speaking person answering the interview. As this is a very specific domain, in addition to the linguistic challenges posed by translating between Arabic and German, we also focus in this paper on the methods we implemented for adapting our speech translation system to the domain of this psychiatric interview.</abstract>
<identifier type="citekey">hussain-etal-2020-german</identifier>
<location>
<url>https://aclanthology.org/2020.wanlp-1.1</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1</start>
<end>11</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T German-Arabic Speech-to-Speech Translation for Psychiatric Diagnosis
%A Hussain, Juan
%A Mediani, Mohammed
%A Behr, Moritz
%A Cheragui, M. Amin
%A Stüker, Sebastian
%A Waibel, Alexander
%Y Zitouni, Imed
%Y Abdul-Mageed, Muhammad
%Y Bouamor, Houda
%Y Bougares, Fethi
%Y El-Haj, Mahmoud
%Y Tomeh, Nadi
%Y Zaghouani, Wajdi
%S Proceedings of the Fifth Arabic Natural Language Processing Workshop
%D 2020
%8 December
%I Association for Computational Linguistics
%C Barcelona, Spain (Online)
%F hussain-etal-2020-german
%X In this paper we present the natural language processing components of our German-Arabic speech-to-speech translation system which is being deployed in the context of interpretation during psychiatric, diagnostic interviews. For this purpose we have built a pipe-lined speech-to-speech translation system consisting of automatic speech recognition, text post-processing/segmentation, machine translation and speech synthesis systems. We have implemented two pipe-lines, from German to Arabic and Arabic to German, in order to be able to conduct interpreted two-way dialogues between psychiatrists and potential patients. All systems in our pipeline have been realized as all-neural end-to-end systems, using different architectures suitable for the different components. The speech recognition systems use an encoder/decoder + attention architecture, the text segmentation component and the machine translation system are based on the Transformer architecture, and for the speech synthesis systems we use Tacotron 2 for generating spectrograms and WaveGlow as vocoder. The speech translation is deployed in a server-based speech translation application that implements a turn based translation between a German speaking psychiatrist administrating the Mini-International Neuropsychiatric Interview (M.I.N.I.) and an Arabic speaking person answering the interview. As this is a very specific domain, in addition to the linguistic challenges posed by translating between Arabic and German, we also focus in this paper on the methods we implemented for adapting our speech translation system to the domain of this psychiatric interview.
%U https://aclanthology.org/2020.wanlp-1.1
%P 1-11
Markdown (Informal)
[German-Arabic Speech-to-Speech Translation for Psychiatric Diagnosis](https://aclanthology.org/2020.wanlp-1.1) (Hussain et al., WANLP 2020)
ACL