@inproceedings{nayak-etal-2020-adapt,
title = "The {ADAPT} Centre{'}s Participation in {WAT} 2020 {E}nglish-to-{O}dia Translation Task",
author = "Nayak, Prashanth and
Haque, Rejwanul and
Way, Andy",
booktitle = "Proceedings of the 7th Workshop on Asian Translation",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wat-1.12",
pages = "114--117",
abstract = "This paper describes the ADAPT Centre sub-missions to WAT 2020 for the English-to-Odia translation task. We present the approaches that we followed to try to build competitive machine translation (MT) systems for English-to-Odia. Our approaches include monolingual data selection for creating synthetic data and identifying optimal sets of hyperparameters for the Transformer in a low-resource scenario. Our best MT system produces 4.96BLEU points on the evaluation test set in the English-to-Odia translation task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nayak-etal-2020-adapt">
<titleInfo>
<title>The ADAPT Centre’s Participation in WAT 2020 English-to-Odia Translation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Prashanth</namePart>
<namePart type="family">Nayak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rejwanul</namePart>
<namePart type="family">Haque</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andy</namePart>
<namePart type="family">Way</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on Asian Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the ADAPT Centre sub-missions to WAT 2020 for the English-to-Odia translation task. We present the approaches that we followed to try to build competitive machine translation (MT) systems for English-to-Odia. Our approaches include monolingual data selection for creating synthetic data and identifying optimal sets of hyperparameters for the Transformer in a low-resource scenario. Our best MT system produces 4.96BLEU points on the evaluation test set in the English-to-Odia translation task.</abstract>
<identifier type="citekey">nayak-etal-2020-adapt</identifier>
<location>
<url>https://aclanthology.org/2020.wat-1.12</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>114</start>
<end>117</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The ADAPT Centre’s Participation in WAT 2020 English-to-Odia Translation Task
%A Nayak, Prashanth
%A Haque, Rejwanul
%A Way, Andy
%S Proceedings of the 7th Workshop on Asian Translation
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F nayak-etal-2020-adapt
%X This paper describes the ADAPT Centre sub-missions to WAT 2020 for the English-to-Odia translation task. We present the approaches that we followed to try to build competitive machine translation (MT) systems for English-to-Odia. Our approaches include monolingual data selection for creating synthetic data and identifying optimal sets of hyperparameters for the Transformer in a low-resource scenario. Our best MT system produces 4.96BLEU points on the evaluation test set in the English-to-Odia translation task.
%U https://aclanthology.org/2020.wat-1.12
%P 114-117
Markdown (Informal)
[The ADAPT Centre’s Participation in WAT 2020 English-to-Odia Translation Task](https://aclanthology.org/2020.wat-1.12) (Nayak et al., WAT 2020)
ACL