@inproceedings{ramesh-etal-2020-error,
title = "An Error-based Investigation of Statistical and Neural Machine Translation Performance on {H}indi-to-{T}amil and {E}nglish-to-{T}amil",
author = "Ramesh, Akshai and
Balavadhani Parthasa, Venkatesh and
Haque, Rejwanul and
Way, Andy",
editor = "Nakazawa, Toshiaki and
Nakayama, Hideki and
Ding, Chenchen and
Dabre, Raj and
Kunchukuttan, Anoop and
Pa, Win Pa and
Bojar, Ond{\v{r}}ej and
Parida, Shantipriya and
Goto, Isao and
Mino, Hidaya and
Manabe, Hiroshi and
Sudoh, Katsuhito and
Kurohashi, Sadao and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the 7th Workshop on Asian Translation",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wat-1.22/",
doi = "10.18653/v1/2020.wat-1.22",
pages = "178--188",
abstract = "Statistical machine translation (SMT) was the state-of-the-art in machine translation (MT) research for more than two decades, but has since been superseded by neural MT (NMT). Despite producing state-of-the-art results in many translation tasks, neural models underperform in resource-poor scenarios. Despite some success, none of the present-day benchmarks that have tried to overcome this problem can be regarded as a universal solution to the problem of translation of many low-resource languages. In this work, we investigate the performance of phrase-based SMT (PB-SMT) and NMT on two rarely-tested low-resource language-pairs, English-to-Tamil and Hindi-to-Tamil, taking a specialised data domain (software localisation) into consideration. This paper demonstrates our findings including the identification of several issues of the current neural approaches to low-resource domain-specific text translation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ramesh-etal-2020-error">
<titleInfo>
<title>An Error-based Investigation of Statistical and Neural Machine Translation Performance on Hindi-to-Tamil and English-to-Tamil</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akshai</namePart>
<namePart type="family">Ramesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Venkatesh</namePart>
<namePart type="family">Balavadhani Parthasa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rejwanul</namePart>
<namePart type="family">Haque</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andy</namePart>
<namePart type="family">Way</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on Asian Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hideki</namePart>
<namePart type="family">Nakayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenchen</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raj</namePart>
<namePart type="family">Dabre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Kunchukuttan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Win</namePart>
<namePart type="given">Pa</namePart>
<namePart type="family">Pa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shantipriya</namePart>
<namePart type="family">Parida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isao</namePart>
<namePart type="family">Goto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hidaya</namePart>
<namePart type="family">Mino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Manabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katsuhito</namePart>
<namePart type="family">Sudoh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Statistical machine translation (SMT) was the state-of-the-art in machine translation (MT) research for more than two decades, but has since been superseded by neural MT (NMT). Despite producing state-of-the-art results in many translation tasks, neural models underperform in resource-poor scenarios. Despite some success, none of the present-day benchmarks that have tried to overcome this problem can be regarded as a universal solution to the problem of translation of many low-resource languages. In this work, we investigate the performance of phrase-based SMT (PB-SMT) and NMT on two rarely-tested low-resource language-pairs, English-to-Tamil and Hindi-to-Tamil, taking a specialised data domain (software localisation) into consideration. This paper demonstrates our findings including the identification of several issues of the current neural approaches to low-resource domain-specific text translation.</abstract>
<identifier type="citekey">ramesh-etal-2020-error</identifier>
<identifier type="doi">10.18653/v1/2020.wat-1.22</identifier>
<location>
<url>https://aclanthology.org/2020.wat-1.22/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>178</start>
<end>188</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Error-based Investigation of Statistical and Neural Machine Translation Performance on Hindi-to-Tamil and English-to-Tamil
%A Ramesh, Akshai
%A Balavadhani Parthasa, Venkatesh
%A Haque, Rejwanul
%A Way, Andy
%Y Nakazawa, Toshiaki
%Y Nakayama, Hideki
%Y Ding, Chenchen
%Y Dabre, Raj
%Y Kunchukuttan, Anoop
%Y Pa, Win Pa
%Y Bojar, Ondřej
%Y Parida, Shantipriya
%Y Goto, Isao
%Y Mino, Hidaya
%Y Manabe, Hiroshi
%Y Sudoh, Katsuhito
%Y Kurohashi, Sadao
%Y Bhattacharyya, Pushpak
%S Proceedings of the 7th Workshop on Asian Translation
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F ramesh-etal-2020-error
%X Statistical machine translation (SMT) was the state-of-the-art in machine translation (MT) research for more than two decades, but has since been superseded by neural MT (NMT). Despite producing state-of-the-art results in many translation tasks, neural models underperform in resource-poor scenarios. Despite some success, none of the present-day benchmarks that have tried to overcome this problem can be regarded as a universal solution to the problem of translation of many low-resource languages. In this work, we investigate the performance of phrase-based SMT (PB-SMT) and NMT on two rarely-tested low-resource language-pairs, English-to-Tamil and Hindi-to-Tamil, taking a specialised data domain (software localisation) into consideration. This paper demonstrates our findings including the identification of several issues of the current neural approaches to low-resource domain-specific text translation.
%R 10.18653/v1/2020.wat-1.22
%U https://aclanthology.org/2020.wat-1.22/
%U https://doi.org/10.18653/v1/2020.wat-1.22
%P 178-188
Markdown (Informal)
[An Error-based Investigation of Statistical and Neural Machine Translation Performance on Hindi-to-Tamil and English-to-Tamil](https://aclanthology.org/2020.wat-1.22/) (Ramesh et al., WAT 2020)
ACL