@inproceedings{mille-etal-2020-case,
title = "A Case Study of {NLG} from Multimedia Data Sources: Generating Architectural Landmark Descriptions",
author = "Mille, Simon and
Symeonidis, Spyridon and
Rousi, Maria and
Marimon Felipe, Montserrat and
Stavrothanasopoulos, Klearchos and
Alvanitopoulos, Petros and
Carlini Salguero, Roberto and
Grivolla, Jens and
Meditskos, Georgios and
Vrochidis, Stefanos and
Wanner, Leo",
editor = "Castro Ferreira, Thiago and
Gardent, Claire and
Ilinykh, Nikolai and
van der Lee, Chris and
Mille, Simon and
Moussallem, Diego and
Shimorina, Anastasia",
booktitle = "Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)",
month = "12",
year = "2020",
address = "Dublin, Ireland (Virtual)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.webnlg-1.1",
pages = "2--14",
abstract = "In this paper, we present a pipeline system that generates architectural landmark descriptions using textual, visual and structured data. The pipeline comprises five main components:(i) a textual analysis component, which extracts information from Wikipedia pages; (ii)a visual analysis component, which extracts information from copyright-free images; (iii) a retrieval component, which gathers relevant (property, subject, object) triples from DBpedia; (iv) a fusion component, which stores the contents from the different modalities in a Knowledge Base (KB) and resolves the conflicts that stem from using different sources of information; (v) an NLG component, which verbalises the resulting contents of the KB. We show that thanks to the addition of other modalities, we can make the verbalisation of DBpedia triples more relevant and/or inspirational.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mille-etal-2020-case">
<titleInfo>
<title>A Case Study of NLG from Multimedia Data Sources: Generating Architectural Landmark Descriptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spyridon</namePart>
<namePart type="family">Symeonidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Rousi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Montserrat</namePart>
<namePart type="family">Marimon Felipe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Klearchos</namePart>
<namePart type="family">Stavrothanasopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petros</namePart>
<namePart type="family">Alvanitopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Carlini Salguero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jens</namePart>
<namePart type="family">Grivolla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Meditskos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefanos</namePart>
<namePart type="family">Vrochidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thiago</namePart>
<namePart type="family">Castro Ferreira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Gardent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolai</namePart>
<namePart type="family">Ilinykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">van der Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diego</namePart>
<namePart type="family">Moussallem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Shimorina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland (Virtual)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present a pipeline system that generates architectural landmark descriptions using textual, visual and structured data. The pipeline comprises five main components:(i) a textual analysis component, which extracts information from Wikipedia pages; (ii)a visual analysis component, which extracts information from copyright-free images; (iii) a retrieval component, which gathers relevant (property, subject, object) triples from DBpedia; (iv) a fusion component, which stores the contents from the different modalities in a Knowledge Base (KB) and resolves the conflicts that stem from using different sources of information; (v) an NLG component, which verbalises the resulting contents of the KB. We show that thanks to the addition of other modalities, we can make the verbalisation of DBpedia triples more relevant and/or inspirational.</abstract>
<identifier type="citekey">mille-etal-2020-case</identifier>
<location>
<url>https://aclanthology.org/2020.webnlg-1.1</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2</start>
<end>14</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Case Study of NLG from Multimedia Data Sources: Generating Architectural Landmark Descriptions
%A Mille, Simon
%A Symeonidis, Spyridon
%A Rousi, Maria
%A Marimon Felipe, Montserrat
%A Stavrothanasopoulos, Klearchos
%A Alvanitopoulos, Petros
%A Carlini Salguero, Roberto
%A Grivolla, Jens
%A Meditskos, Georgios
%A Vrochidis, Stefanos
%A Wanner, Leo
%Y Castro Ferreira, Thiago
%Y Gardent, Claire
%Y Ilinykh, Nikolai
%Y van der Lee, Chris
%Y Mille, Simon
%Y Moussallem, Diego
%Y Shimorina, Anastasia
%S Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)
%D 2020
%8 December
%I Association for Computational Linguistics
%C Dublin, Ireland (Virtual)
%F mille-etal-2020-case
%X In this paper, we present a pipeline system that generates architectural landmark descriptions using textual, visual and structured data. The pipeline comprises five main components:(i) a textual analysis component, which extracts information from Wikipedia pages; (ii)a visual analysis component, which extracts information from copyright-free images; (iii) a retrieval component, which gathers relevant (property, subject, object) triples from DBpedia; (iv) a fusion component, which stores the contents from the different modalities in a Knowledge Base (KB) and resolves the conflicts that stem from using different sources of information; (v) an NLG component, which verbalises the resulting contents of the KB. We show that thanks to the addition of other modalities, we can make the verbalisation of DBpedia triples more relevant and/or inspirational.
%U https://aclanthology.org/2020.webnlg-1.1
%P 2-14
Markdown (Informal)
[A Case Study of NLG from Multimedia Data Sources: Generating Architectural Landmark Descriptions](https://aclanthology.org/2020.webnlg-1.1) (Mille et al., WebNLG 2020)
ACL
- Simon Mille, Spyridon Symeonidis, Maria Rousi, Montserrat Marimon Felipe, Klearchos Stavrothanasopoulos, Petros Alvanitopoulos, Roberto Carlini Salguero, Jens Grivolla, Georgios Meditskos, Stefanos Vrochidis, and Leo Wanner. 2020. A Case Study of NLG from Multimedia Data Sources: Generating Architectural Landmark Descriptions. In Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+), pages 2–14, Dublin, Ireland (Virtual). Association for Computational Linguistics.