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Abstract

Text verbalization of knowledge graphs is an
important problem with wide application to
natural language generation (NLG) systems.
It is challenging because the generated text
not only needs to be grammatically correct
(fluency), but also has to contain the given
structured knowledge input (relevance) and
meet some other criteria. We develop a plan-
and-pretrain approach, P2, which consists of
a relational graph convolutional network (R-
GCN) planner and the pretrained sequence-to-
sequence (Seq2Seq) model T5. Specifically,
the R-GCN planner first generates an order of
the knowledge graph triplets, corresponding to
the order that they will be mentioned in text,
and then T5 produces the surface realization of
the given plan. In the WebNLG+ 2020 Chal-
lenge, our submission ranked in 1st place on
all automatic and human evaluation criteria of
the English RDF-to-text generation task.1

1 Introduction

The WebNLG 2020 Challenge (Castro-Ferreira
et al., 2020) focuses on automating the conversion
between text and knowledge graph domains, both
of which are important ways to store and record
knowledge. In brief, the challenge is comprised
of two tasks and two languages, namely knowl-
edge graph-to-text generation (G2T) and text-to-
knowledge graph extraction (T2G), with separate
tracks for English and Russian languages. Our
team, Amazon AI (Shanghai), participated in both
tasks in English and achieved 1st place in each case.
This report will primarily focus on our approach
for the G2T task (which received by far the most
competing submissions); for the other T2G task,
we will briefly summarize our simple strategy in
Section 5.

1Our code is available at https://github.com/
QipengGuo/P2_WebNLG2020.
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Figure 1: A diagram of our knowledge graph-to-text
model. The P2 model takes in the graph, then (1) lin-
earizes it to a plan with the desired order of triplets
by the R-GCN planner, and (2) uses the pretrained T5
model to learn the plan-to-text generation.

For G2T, we introduce a plan-and-pretrain ap-
proach, P2, which uses a text planner based on
relational graph convolutional networks (R-GCN)
proposed by Zhao et al. (2020), and the pretrained
T5 Seq2Seq model (Raffel et al., 2020), as shown
in Figure 1. To further boost performance, our P2

model also incorporates a mechanism to canonical-
ize the entities in WebNLG with special characters.

Overall, our contributions are as follows:

• We develop a plan-and-pretrain approach, P2,
for knowledge graph-to-text generation. P2

unleashes the power of the pretrained T5
model by pipelining it with a R-GCN content
planner and special canonicalization rules.

• Our P2 model achieved the top-1 perfor-
mance on all criteria of both the automatic
and human evaluations of knowledge graph-
to-text generation task in English.
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• We open-sourced our code and outputs as a
reference for future work.

2 WebNLG 2020 Challenge Overview

The English version of WebNLG 2020 has two
tasks: The first task aims to automate knowledge
graph-to-text generation (G2T), which is an exten-
sion of the G2T task in the previous WebNLG Chal-
lenge 2017 (Gardent et al., 2017b) with broader cat-
egories of knowledge graph and text pairs. Given
a knowledge graph of several (subject, predicate,
object) triplets, participant systems need to gen-
erate verbalizations of the knowledge graph that
maintain the same information but in natural lan-
guage. The other task, text-to-knowledge graph
extraction (T2G), involves extracting entities and
relations from text to form a knowledge graph.

In terms of data, the English WebNLG 2020
track (Castro-Ferreira et al., 2020) covers knowl-
edge graphs and text from a variety of domains
including Airport, Artist, Astronaut, Athlete, Build-
ing, Celestial Body, City, Comics Character, Food,
Mode of Transportation, Monument, Politician,
Sports Team, University, and Written Work.2 And
the test sets includes three additional domains,
Film, Scientist, and Musical Work.

Within these data, each knowledge graph con-
sists of 2 to 7 triplets extracted from DBpedia.
To collect the text description corresponding to
each knowledge graph, crowd-source workers were
asked to verbalize the graphs. The statistics of the
dataset are shown in Table 1.

Split Number of Samples
Train (T-G Pairs) 35,426
Valid (T-G Pairs) 4,464
Test (Only G, for G2T) 1,779
Test (Only T, for T2G) 2,155

Table 1: Number of text and knowledge graph
pairs in the training, validation, and test sets of the
WebNLG 2020 English dataset.

3 P2 for G2T Generation

Inspired by recent work on the WebNLG 2017
dataset (Ribeiro et al., 2020; Kale, 2020) that
achieved state-of-the-art G2T performance with a
pretrained Seq2Seq T5 model (Raffel et al., 2020),

2https://webnlg-challenge.loria.fr/
challenge_2020/

we also adopt T5 as the backbone of our approach.
To produce the input sequence to feed into T5, one
direct way following Ribeiro et al. (2020); Kale
(2020) is to “linearize” the graph by iterating the
(subject, predicate, object) triplets in a random or-
der, using special tokens to specify the subject,
predicate, and object of the knowledge triplet. How-
ever, feeding the triplets in a random order can in-
troduce burdens for the T5 Seq2Seq model, which
must verbalize each triplet while organizing the
information within a natural ordering. To assist T5
with the latter, we use a relational graph convolu-
tional network-based planner (R-GCN planner) by
Zhao et al. (2020) to learn the best order to linearize
a graph.

The overview of our P2 framework is shown in
Figure 1. For a given graph, the R-GCN planner
generates a plan, which is a sequence of triplets
in the form (subject, predicate, object), and the
triplets’ order corresponds with the order in which
they will be expressed in the text. The plan is
then fed into a Seq2Seq model for the final natural
language generation.

Note that the idea of incorporating a planner and
a text decoder has been introduced in Zhao et al.
(2020), albeit not with a design that is specifically
paired with a Seq2Seq model. But given that this
work has shown the effectiveness of the planner,
we focus on how to integrate it with a pretrained
Seq2Seq model in a system. In this regard, our
method contains four parts: (1) a R-GCN planner
from (Zhao et al., 2020), (2) a rule-based interface
that converts plans into a Seq2Seq friendly format,
(3) a pretrained T5 Seq2Seq model following the
practice of Kale (2020), and (4) some canocaliza-
tion rules to deal with special characters that are
not contained with the dictionary of T5. We now
describe each of these components in turn.

3.1 R-GCN Planner

Our R-GCN planner is largely based on (Zhao et al.,
2020). The input of the planner is a knowledge
graph as represented via the Resource Description
Framework (RDF) (Lassila et al., 1998), where the
basic unit is the triplet of a subject (s), predicate
(p), and object (o), such as (Paris, IsCapitalOf,
France). Since there can be multiple triplets (e.g.,
2-7 triplets as in the WebNLG dataset), the planner
takes in a random order of triplets 1 to N , and
aims to find an ideal order of the triplets, such as
“(s2,p2,o2)→ (s3,p3,o3)→ (s1,p1,o1).” The
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ideal plan we want to generate corresponds to the
order that the triplets are mentioned in the ground-
truth text.

Following (Zhao et al., 2020), we use an R-GCN
(Schlichtkrull et al., 2018) to encode the knowl-
edge graphs. Then, to arrange the triplets in the
order that corresponds to the occurrence of their
information in the text, the plan is learning in an
autoregressive fashion. At each time step, the plan-
ner selects the node that represents the triplet that
is the most likely to be next, and subsequently we
re-run the R-GCN on the updated graph (where the
selected triplet’s node feature will change).

To train the planner, since it is not straightfor-
ward to obtain the order of RDF triplets verbalized
in the text from the WebNLG 2020 dataset, we use
an outside data source with annotated plans. We
use the enriched version of WebNLG 2017, called
enriched WebNLG (Ferreira et al., 2018, 2019).3

It consists of 5,152 training, 644 validation and
1,408 test samples. We only use the training set to
train our planner, and reserve the validation set for
choosing the best planner model.

3.2 Converting Plans to Sequences

Since the raw output of the planner is an ordered list
of triplets, we need to convert the raw plan into a
sequential form that is friendly to the T5 as an input.
To this end, the beginning of each sequence uses
a new task-specific prefix, “Graph to Text:.” This
serves as the the prefix to all training samples, and
also to any subsequent test samples. Additionally,
for entities or relations spanning multiple words,
we add an underline _ to connect each token in
them. For example, the relation type “area code” is
changed into “area_code.” Each triplet will then be
serialized with special tokens signaling the subject,
predicate, and object, such as in “Graph to Text:
〈S〉 Darlington 〈P〉 area code 〈O〉 01325.”

And finally, since T5 uses byte-pair encoding,
the exact input format of relation type “area code”
is actually “area@@ _@@ code” to ensure proper
readability. So the final representation of the above
example as presented to the T5 model is “Graph to
Text: 〈S〉 Darlington 〈P〉 area@@ _@@ code 〈O〉
01325.”

3https://github.com/ThiagoCF05/webnlg/
tree/master/data/v1.5

3.3 Pretrained Seq2Seq Model for
Plan-to-Text Generation

As mentioned previously, to generate text from the
plans obtained by the R-GCN planner, we adopt the
powerful pretrained model T5 (Raffel et al., 2020),
which is the state-of-the-art model (Kale, 2020;
Ribeiro et al., 2000) on the WebNLG 2017 dataset
(Gardent et al., 2017a), and often seen on other
Seq2Seq tasks such as machine translation (Raffel
et al., 2020). T5 uses the Transformer architecture
(Vaswani et al., 2017) and is pretrained on several
large corpora with carefully tuned hyperparameters
(Raffel et al., 2020).

The powerful pretraining of T5 has equipped it
with strong text generation ability to verbalize the
triplets in a fluent way, and also some generaliz-
ability that can help on unseen data. For present
purposes, we finetune T5 for 10 epochs using the
input sequences from Section 3.2.

One potential concern though is whether T5 can
cope with the variety of entities in the WebNLG
dataset, such as a long airport name “Adolfo Suárez
Madrid—Barajas Airport.” Such a concern has mo-
tivated the previous invention of the copy mecha-
nism (See et al., 2017), which models a switch to
select between generating a new word or copying
a word from the input text sequence. Despite this
potential concern, we find that the T5 can handle
the entities in an adept manner, generating compli-
cated entities such as a long phone number without
difficulty.

3.4 Canonicalization of Special Tokens

Since the WebNLG data contains lots of special
tokens, or non-English characters, e.g., “Adolfo
Suárez Madrid—Barajas Airport,” we use a special
canonicalization algorithm to preprocess the data.
Our goal is to convert characters that are not in
the English alphabet that T5’s byte pair encoding
dictionary covers into characters within T5’s dictio-
nary. By aligning the dictionary, we can maximize
the power of the pretrained T5.

As a representative example, consider the entity
“Adolfo Suárez Madrid—Barajas Airport,” where
“á” is a non-English character that T5 does not rec-
ognize, and the long dash “—” is also different
from the short hyphen “–” with which T5 is more
familiar. For the non-English alphabetical charac-
ters, we use an approximate solution, converting
them to their English alternatives by the Unidecode
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BLEU METEOR chrF++ TER BERTPrecision BERTRecall BERTF1 BLUERT

ID18 (Ours) 53.98 0.417 0.690 0.406 0.960 0.957 0.958 0.62
ID30 53.54 0.414 0.688 0.416 0.958 0.955 0.956 0.61
ID30_1 52.07 0.413 0.685 0.444 0.955 0.954 0.954 0.58
ID34 52.67 0.413 0.686 0.423 0.957 0.955 0.956 0.6
ID5 51.74 0.411 0.679 0.435 0.955 0.954 0.954 0.6
ID35 51.59 0.409 0.681 0.431 0.956 0.954 0.954 0.59
ID23 51.74 0.403 0.669 0.417 0.959 0.954 0.956 0.61
ID2 50.34 0.398 0.666 0.435 0.954 0.950 0.951 0.57
ID15 40.73 0.393 0.646 0.511 0.940 0.946 0.943 0.45
ID28 44.56 0.387 0.637 0.479 0.949 0.949 0.948 0.54
Base1 40.22 0.384 0.648 0.476 0.949 0.950 0.949 0.55
Base2 38.07 0.367 0.626 0.515 0.933 0.941 0.932 0.50

Table 2: Performance of top 10 systems and two official baselines (Base1 and Base 2) on the leaderboard of the
WebNLG 2020 English RDF-to-text challenge as ranked by METEOR. With all metrics, larger is better, with the
exception of TER where lower is better. In all categories, our system achieved the first place. Note that ID28 is an
unsupervised system (Guo et al., 2020).

package.4 And for punctuations such as hyphens
and quotation marks, the Unidecode package also
canonicalizes them to the most standard ones.

Apart from character canocalization, we can
also potentially change units of measurement, e.g.,
“kg/m3,” to the corresponding textual equivalent,
e.g., “kilogram per cubic meter,” so that the inputs
will have more overlap with the corpora that T5
was originally trained on. For the current approach
however, we did not actually use this additional pre-
processing due to the time limit of the challenge.

After the T5 model generates the output se-
quence that is canonicalized and does not contain
illegal characters, we need to convert it back to its
original spelling as provided in the input, other-
wise the T5 raw output would score poorly on the
test set. (Note that most automatic metrics calcu-
late machine-recognizable word overlaps but not
human-intelligible ones.) Consequently, after the
T5 raw output, we reverse-engineer the original
spelling by coding some rules to infer the original
spelling by comparing the raw input data versus its
preprocessed version. In this way, our model’s final
outputs recover the original text form of entities
and relations which is consistent with the raw data.

4 Experiments

We first provide implementation details, followed
by a presentation of quantitative comparisons using
automatic and human evaluation metrics.

4.1 Implementation Details
Beyond the planner module based on Zhao et al.
(2020), we adopt the T5-Large model from (Kale,

4https://pypi.org/project/Unidecode/

2020) as our Seq2Seq model. And our implementa-
tion is based on DGL (Wang et al., 2019), Pytorch,5

and Transformers (Wolf et al., 2019). The details of
hyperparameters can be found in our open-sourced
GitHub repository.

4.2 Automatic Evaluation

For the knowledge graph-to-text generation task,
WebNLG 2020 evaluates the text quality by a range
of different quantitative metrics (Moussalem et al.,
2020) that are listed on an automatic evaluation
leaderboard. For this purpose, the quality of tex-
tual outputs are assessed using BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
chrF++ (Popovic, 2017), and TER (Snover et al.,
2006). In brief, these metrics quantify the n-gram
recall, precision, or F-scores between the model
outputs and the ground-truth references. Addition-
ally, several BERT-based scores are also reported,
including BERTPrecision, BERTRecall, and BERTF1
from Zhang et al. (2020), and BLUERT from Sel-
lam et al. (2020).

We present the performance of the top 10 sys-
tems and two official baselines on the leaderboard
of WebNLG 2020 English RDF-to-text challenge
in Table 2. Our P2 model achieves the highest out
of all systems on all automatic evaluation criteria,
indicating higher similarity to the ground truth hu-
man written reference in the test set. For example,
in terms of BLEU our model outperforms the sec-
ond system by +0.44, and is over the two official
baselines by +13.76 and +15.91, respectively.

5https://pytorch.org/
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Data Coverage Relevance Correctness Text Structure Fluency Avg. Z
R Z P R Z P R Z P R Z P R Z P

ID18 (Ours) 1 0.222 94.393 1 0.214 95.196 1 0.248 93.531 1 0.305 92.951 1 0.326 90.286 0.263
ID30 1 0.235 95.123 1 0.163 94.615 1 0.224 93.409 1 0.289 92.438 1 0.323 90.066 0.2468
Ref 1 0.251 95.442 1 0.139 94.392 1 0.256 94.149 1 0.254 92.105 1 0.279 89.846 0.2358
ID34 2 0.151 93.169 2 0.117 93.898 1 0.206 92.7 1 0.319 93.089 1 0.327 90.837 0.2240
ID5 2 0.161 93.836 1 0.184 95.22 1 0.224 93.583 1 0.236 91.914 2 0.218 88.688 0.2046
ID23 2 0.116 92.063 1 0.161 94.061 1 0.189 92.053 1 0.258 91.588 2 0.233 88.898 0.1914
ID2 2 0.155 93.291 1 0.164 94.555 1 0.161 91.587 1 0.208 90.752 2 0.185 87.642 0.1746
Base 1 0.17 92.892 1 0.161 93.784 1 0.19 91.794 2 0.039 87.4 3 0.011 82.43 0.1142
ID4 3 -0.075 88.176 1 0.132 92.64 2 0.074 88.626 1 0.168 89.041 2 0.182 86.163 0.0962
ID28 3 0.023 91.231 1 0.125 93.37 2 0.071 89.846 2 0.045 87.879 3 0.072 84.82 0.672
ID15 1 0.259 95.315 1 0.185 94.856 1 0.179 92.489 3 -0.203 83.501 4 -0.161 78.594 0.0518
Base2017 2 0.127 92.066 2 0.113 92.588 2 0.13 90.138 2 -0.064 85.737 4 -0.143 80.941 0.0326
ID12 1 0.272 95.204 1 0.171 94.81 1 0.163 92.128 3 -0.285 81.835 4 -0.241 77.759 0.0160

Table 3: Performance of top 10 systems, two official baselines (Base and Base2017), and the ground-truth reference
(Ref) written by human annotators on the leaderboard of the WebNLG 2020 English RDF-to-text challenge. The
numbers follow the official website last retrieved in November 2020. On each criteria, we list the rank group (R),
the normalized scores (Z), and the raw rating in percentage (P). The table is sorted by the last column, denoted
Avg. Z, which indicates the averaged Z values across all five fields.

4.3 Human Evaluation

Since no automatic metric is perfect, the WebNLG
2020 Challenge also compares entries by asking
crowdsource workers to evaluate the quality of
model outputs. In this regard, human annotators
provide ratings with respect to five criteria: (1)
data coverage, (2) relevance, (3) correctness, (4)
text structure, and (5) fluency. For each criterion,
human annotators rate on a 0–100 scale, where 0 is
completely disagree and 100 is completely agree.
All scores are then normalised (i.e., z-scores). In
order to make comparisons statistically significant,
all system performance is clustered into groups
within which there are no statistically significant
differences as quantified by a Wilcoxon rank-sum
significant test (Mann and Whitney, 1947).

Table 3 reports results from the leaderboard of
human evaluation results on these five criteria. No-
tably, our model is in the 1st-ranked group on all
five criteria.

5 A Simple Baseline for T2G Extraction

We also briefly describe the very simple baseline
approach that we submitted for the T2G task at
the WebNLG Challenge 2020. Extracting knowl-
edge graph triplets from text contains two steps,
the first to identify the entities, and the second to
obtain the corresponding relations between them.
Accordingly, we first do entity linking to match the
entities in the text with the DBpedia ontology, and
then query the relation between entities from the
DBpedia database.

6 Conclusion

We proposed P2, a plan-and-pretrain approach that
integrates a R-GCN planner and the pretrained T5
model. The resulting performance gain results, at
least in part, from unleashing the power of pre-
trained models, through both the planner and the
canocalization of special characters to ensure a con-
sistent vocabulary with T5. The effectiveness of
our model is demonstrated through both the auto-
matic and human evaluations of the WebNLG 2020
Challenge, where P2 achieved a first-place rank-
ing.
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