@inproceedings{yeo-chen-2020-defining,
title = "Defining and Evaluating Fair Natural Language Generation",
author = "Yeo, Catherine and
Chen, Alyssa",
booktitle = "Proceedings of the The Fourth Widening Natural Language Processing Workshop",
month = jul,
year = "2020",
address = "Seattle, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.winlp-1.27",
doi = "10.18653/v1/2020.winlp-1.27",
pages = "107--109",
abstract = "Our work focuses on the biases that emerge in the natural language generation (NLG) task of sentence completion. In this paper, we introduce a mathematical framework of fairness for NLG followed by an evaluation of gender biases in two state-of-the-art language models. Our analysis provides a theoretical formulation for biases in NLG and empirical evidence that existing language generation models embed gender bias.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yeo-chen-2020-defining">
<titleInfo>
<title>Defining and Evaluating Fair Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Catherine</namePart>
<namePart type="family">Yeo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alyssa</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the The Fourth Widening Natural Language Processing Workshop</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our work focuses on the biases that emerge in the natural language generation (NLG) task of sentence completion. In this paper, we introduce a mathematical framework of fairness for NLG followed by an evaluation of gender biases in two state-of-the-art language models. Our analysis provides a theoretical formulation for biases in NLG and empirical evidence that existing language generation models embed gender bias.</abstract>
<identifier type="citekey">yeo-chen-2020-defining</identifier>
<identifier type="doi">10.18653/v1/2020.winlp-1.27</identifier>
<location>
<url>https://aclanthology.org/2020.winlp-1.27</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>107</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Defining and Evaluating Fair Natural Language Generation
%A Yeo, Catherine
%A Chen, Alyssa
%S Proceedings of the The Fourth Widening Natural Language Processing Workshop
%D 2020
%8 July
%I Association for Computational Linguistics
%C Seattle, USA
%F yeo-chen-2020-defining
%X Our work focuses on the biases that emerge in the natural language generation (NLG) task of sentence completion. In this paper, we introduce a mathematical framework of fairness for NLG followed by an evaluation of gender biases in two state-of-the-art language models. Our analysis provides a theoretical formulation for biases in NLG and empirical evidence that existing language generation models embed gender bias.
%R 10.18653/v1/2020.winlp-1.27
%U https://aclanthology.org/2020.winlp-1.27
%U https://doi.org/10.18653/v1/2020.winlp-1.27
%P 107-109
Markdown (Informal)
[Defining and Evaluating Fair Natural Language Generation](https://aclanthology.org/2020.winlp-1.27) (Yeo & Chen, WiNLP 2020)
ACL