@inproceedings{wu-etal-2020-tencent,
title = "Tencent Neural Machine Translation Systems for the {WMT}20 News Translation Task",
author = "Wu, Shuangzhi and
Wang, Xing and
Wang, Longyue and
Liu, Fangxu and
Xie, Jun and
Tu, Zhaopeng and
Shi, Shuming and
Li, Mu",
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.34",
pages = "313--319",
abstract = "This paper describes Tencent Neural Machine Translation systems for the WMT 2020 news translation tasks. We participate in the shared news translation task on English $\leftrightarrow$ Chinese and English $\rightarrow$ German language pairs. Our systems are built on deep Transformer and several data augmentation methods. We propose a boosted in-domain finetuning method to improve single models. Ensemble is used to combine single models and we propose an iterative transductive ensemble method which can further improve the translation performance based on the ensemble results. We achieve a BLEU score of 36.8 and the highest chrF score of 0.648 on Chinese $\rightarrow$ English task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2020-tencent">
<titleInfo>
<title>Tencent Neural Machine Translation Systems for the WMT20 News Translation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuangzhi</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Longyue</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fangxu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaopeng</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuming</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Conference on Machine Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes Tencent Neural Machine Translation systems for the WMT 2020 news translation tasks. We participate in the shared news translation task on English łeftrightarrow Chinese and English \rightarrow German language pairs. Our systems are built on deep Transformer and several data augmentation methods. We propose a boosted in-domain finetuning method to improve single models. Ensemble is used to combine single models and we propose an iterative transductive ensemble method which can further improve the translation performance based on the ensemble results. We achieve a BLEU score of 36.8 and the highest chrF score of 0.648 on Chinese \rightarrow English task.</abstract>
<identifier type="citekey">wu-etal-2020-tencent</identifier>
<location>
<url>https://aclanthology.org/2020.wmt-1.34</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>313</start>
<end>319</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tencent Neural Machine Translation Systems for the WMT20 News Translation Task
%A Wu, Shuangzhi
%A Wang, Xing
%A Wang, Longyue
%A Liu, Fangxu
%A Xie, Jun
%A Tu, Zhaopeng
%A Shi, Shuming
%A Li, Mu
%S Proceedings of the Fifth Conference on Machine Translation
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F wu-etal-2020-tencent
%X This paper describes Tencent Neural Machine Translation systems for the WMT 2020 news translation tasks. We participate in the shared news translation task on English łeftrightarrow Chinese and English \rightarrow German language pairs. Our systems are built on deep Transformer and several data augmentation methods. We propose a boosted in-domain finetuning method to improve single models. Ensemble is used to combine single models and we propose an iterative transductive ensemble method which can further improve the translation performance based on the ensemble results. We achieve a BLEU score of 36.8 and the highest chrF score of 0.648 on Chinese \rightarrow English task.
%U https://aclanthology.org/2020.wmt-1.34
%P 313-319
Markdown (Informal)
[Tencent Neural Machine Translation Systems for the WMT20 News Translation Task](https://aclanthology.org/2020.wmt-1.34) (Wu et al., WMT 2020)
ACL