Abstract
This review depicts our submission to the WMT20 shared news translation task. WMT is the conference to assess the level of machine translation capabilities of organizations in the word. We participated in one language pair and two language directions, from Russian to English and from English to Russian. We used official training data, 102 million parallel corpora and 10 million monolingual corpora. Our baseline systems are Transformer models trained with the Sockeye sequence modeling toolkit, supplemented by bi-text data filtering schemes, back-translations, reordering and other related processing methods. The BLEU value of our translation result from Russian to English is 35.7, ranking 5th, while from English to Russian is 39.8, ranking 2th.- Anthology ID:
- 2020.wmt-1.35
- Volume:
- Proceedings of the Fifth Conference on Machine Translation
- Month:
- November
- Year:
- 2020
- Address:
- Online
- Editors:
- Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 320–325
- Language:
- URL:
- https://aclanthology.org/2020.wmt-1.35
- DOI:
- Bibkey:
- Cite (ACL):
- Ariel Xv. 2020. Russian-English Bidirectional Machine Translation System. In Proceedings of the Fifth Conference on Machine Translation, pages 320–325, Online. Association for Computational Linguistics.
- Cite (Informal):
- Russian-English Bidirectional Machine Translation System (Xv, WMT 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.wmt-1.35.pdf
- Video:
- https://slideslive.com/38939619
Export citation
@inproceedings{xv-2020-russian, title = "{R}ussian-{E}nglish Bidirectional Machine Translation System", author = "Xv, Ariel", editor = {Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Graham, Yvette and Guzman, Paco and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.35", pages = "320--325", abstract = "This review depicts our submission to the WMT20 shared news translation task. WMT is the conference to assess the level of machine translation capabilities of organizations in the word. We participated in one language pair and two language directions, from Russian to English and from English to Russian. We used official training data, 102 million parallel corpora and 10 million monolingual corpora. Our baseline systems are Transformer models trained with the Sockeye sequence modeling toolkit, supplemented by bi-text data filtering schemes, back-translations, reordering and other related processing methods. The BLEU value of our translation result from Russian to English is 35.7, ranking 5th, while from English to Russian is 39.8, ranking 2th.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="xv-2020-russian"> <titleInfo> <title>Russian-English Bidirectional Machine Translation System</title> </titleInfo> <name type="personal"> <namePart type="given">Ariel</namePart> <namePart type="family">Xv</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-11</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fifth Conference on Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This review depicts our submission to the WMT20 shared news translation task. WMT is the conference to assess the level of machine translation capabilities of organizations in the word. We participated in one language pair and two language directions, from Russian to English and from English to Russian. We used official training data, 102 million parallel corpora and 10 million monolingual corpora. Our baseline systems are Transformer models trained with the Sockeye sequence modeling toolkit, supplemented by bi-text data filtering schemes, back-translations, reordering and other related processing methods. The BLEU value of our translation result from Russian to English is 35.7, ranking 5th, while from English to Russian is 39.8, ranking 2th.</abstract> <identifier type="citekey">xv-2020-russian</identifier> <location> <url>https://aclanthology.org/2020.wmt-1.35</url> </location> <part> <date>2020-11</date> <extent unit="page"> <start>320</start> <end>325</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Russian-English Bidirectional Machine Translation System %A Xv, Ariel %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Graham, Yvette %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %S Proceedings of the Fifth Conference on Machine Translation %D 2020 %8 November %I Association for Computational Linguistics %C Online %F xv-2020-russian %X This review depicts our submission to the WMT20 shared news translation task. WMT is the conference to assess the level of machine translation capabilities of organizations in the word. We participated in one language pair and two language directions, from Russian to English and from English to Russian. We used official training data, 102 million parallel corpora and 10 million monolingual corpora. Our baseline systems are Transformer models trained with the Sockeye sequence modeling toolkit, supplemented by bi-text data filtering schemes, back-translations, reordering and other related processing methods. The BLEU value of our translation result from Russian to English is 35.7, ranking 5th, while from English to Russian is 39.8, ranking 2th. %U https://aclanthology.org/2020.wmt-1.35 %P 320-325
Markdown (Informal)
[Russian-English Bidirectional Machine Translation System](https://aclanthology.org/2020.wmt-1.35) (Xv, WMT 2020)
- Russian-English Bidirectional Machine Translation System (Xv, WMT 2020)
ACL
- Ariel Xv. 2020. Russian-English Bidirectional Machine Translation System. In Proceedings of the Fifth Conference on Machine Translation, pages 320–325, Online. Association for Computational Linguistics.