The University of Edinburgh’s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task
Rachel Bawden, Alexandra Birch, Radina Dobreva, Arturo Oncevay, Antonio Valerio Miceli Barone, Philip Williams
Correct Metadata for
Abstract
We describe the University of Edinburgh’s submissions to the WMT20 news translation shared task for the low resource language pair English-Tamil and the mid-resource language pair English-Inuktitut. We use the neural machine translation transformer architecture for all submissions and explore a variety of techniques to improve translation quality to compensate for the lack of parallel training data. For the very low-resource English-Tamil, this involves exploring pretraining, using both language model objectives and translation using an unrelated high-resource language pair (German-English), and iterative backtranslation. For English-Inuktitut, we explore the use of multilingual systems, which, despite not being part of the primary submission, would have achieved the best results on the test set.- Anthology ID:
- 2020.wmt-1.5
- Volume:
- Proceedings of the Fifth Conference on Machine Translation
- Month:
- November
- Year:
- 2020
- Address:
- Online
- Editors:
- Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 92–99
- Language:
- URL:
- https://aclanthology.org/2020.wmt-1.5/
- DOI:
- Bibkey:
- Cite (ACL):
- Rachel Bawden, Alexandra Birch, Radina Dobreva, Arturo Oncevay, Antonio Valerio Miceli Barone, and Philip Williams. 2020. The University of Edinburgh’s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task. In Proceedings of the Fifth Conference on Machine Translation, pages 92–99, Online. Association for Computational Linguistics.
- Cite (Informal):
- The University of Edinburgh’s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task (Bawden et al., WMT 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.wmt-1.5.pdf
- Video:
- https://slideslive.com/38939642
Export citation
@inproceedings{bawden-etal-2020-university, title = "The {U}niversity of {E}dinburgh`s {E}nglish-{T}amil and {E}nglish-{I}nuktitut Submissions to the {WMT}20 News Translation Task", author = "Bawden, Rachel and Birch, Alexandra and Dobreva, Radina and Oncevay, Arturo and Miceli Barone, Antonio Valerio and Williams, Philip", editor = {Barrault, Lo{\"i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Graham, Yvette and Guzman, Paco and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.5/", pages = "92--99", abstract = "We describe the University of Edinburgh`s submissions to the WMT20 news translation shared task for the low resource language pair English-Tamil and the mid-resource language pair English-Inuktitut. We use the neural machine translation transformer architecture for all submissions and explore a variety of techniques to improve translation quality to compensate for the lack of parallel training data. For the very low-resource English-Tamil, this involves exploring pretraining, using both language model objectives and translation using an unrelated high-resource language pair (German-English), and iterative backtranslation. For English-Inuktitut, we explore the use of multilingual systems, which, despite not being part of the primary submission, would have achieved the best results on the test set." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="bawden-etal-2020-university"> <titleInfo> <title>The University of Edinburgh‘s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task</title> </titleInfo> <name type="personal"> <namePart type="given">Rachel</namePart> <namePart type="family">Bawden</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexandra</namePart> <namePart type="family">Birch</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Radina</namePart> <namePart type="family">Dobreva</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Arturo</namePart> <namePart type="family">Oncevay</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Valerio</namePart> <namePart type="family">Miceli Barone</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philip</namePart> <namePart type="family">Williams</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-11</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fifth Conference on Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>We describe the University of Edinburgh‘s submissions to the WMT20 news translation shared task for the low resource language pair English-Tamil and the mid-resource language pair English-Inuktitut. We use the neural machine translation transformer architecture for all submissions and explore a variety of techniques to improve translation quality to compensate for the lack of parallel training data. For the very low-resource English-Tamil, this involves exploring pretraining, using both language model objectives and translation using an unrelated high-resource language pair (German-English), and iterative backtranslation. For English-Inuktitut, we explore the use of multilingual systems, which, despite not being part of the primary submission, would have achieved the best results on the test set.</abstract> <identifier type="citekey">bawden-etal-2020-university</identifier> <location> <url>https://aclanthology.org/2020.wmt-1.5/</url> </location> <part> <date>2020-11</date> <extent unit="page"> <start>92</start> <end>99</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T The University of Edinburgh‘s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task %A Bawden, Rachel %A Birch, Alexandra %A Dobreva, Radina %A Oncevay, Arturo %A Miceli Barone, Antonio Valerio %A Williams, Philip %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Graham, Yvette %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %S Proceedings of the Fifth Conference on Machine Translation %D 2020 %8 November %I Association for Computational Linguistics %C Online %F bawden-etal-2020-university %X We describe the University of Edinburgh‘s submissions to the WMT20 news translation shared task for the low resource language pair English-Tamil and the mid-resource language pair English-Inuktitut. We use the neural machine translation transformer architecture for all submissions and explore a variety of techniques to improve translation quality to compensate for the lack of parallel training data. For the very low-resource English-Tamil, this involves exploring pretraining, using both language model objectives and translation using an unrelated high-resource language pair (German-English), and iterative backtranslation. For English-Inuktitut, we explore the use of multilingual systems, which, despite not being part of the primary submission, would have achieved the best results on the test set. %U https://aclanthology.org/2020.wmt-1.5/ %P 92-99
Markdown (Informal)
[The University of Edinburgh’s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task](https://aclanthology.org/2020.wmt-1.5/) (Bawden et al., WMT 2020)
- The University of Edinburgh’s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task (Bawden et al., WMT 2020)
ACL
- Rachel Bawden, Alexandra Birch, Radina Dobreva, Arturo Oncevay, Antonio Valerio Miceli Barone, and Philip Williams. 2020. The University of Edinburgh’s English-Tamil and English-Inuktitut Submissions to the WMT20 News Translation Task. In Proceedings of the Fifth Conference on Machine Translation, pages 92–99, Online. Association for Computational Linguistics.