Priming Neural Machine Translation
Minh Quang Pham, Jitao Xu, Josep Crego, François Yvon, Jean Senellart
Abstract
Priming is a well known and studied psychology phenomenon based on the prior presentation of one stimulus (cue) to influence the processing of a response. In this paper, we propose a framework to mimic the process of priming in the context of neural machine translation (NMT). We evaluate the effect of using similar translations as priming cues on the NMT network. We propose a method to inject priming cues into the NMT network and compare our framework to other mechanisms that perform micro-adaptation during inference. Overall, experiments conducted in a multi-domain setting confirm that adding priming cues in the NMT decoder can go a long way towards improving the translation accuracy. Besides, we show the suitability of our framework to gather valuable information for an NMT network from monolingual resources.- Anthology ID:
- 2020.wmt-1.63
- Volume:
- Proceedings of the Fifth Conference on Machine Translation
- Month:
- November
- Year:
- 2020
- Address:
- Online
- Editors:
- Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 516–527
- Language:
- URL:
- https://aclanthology.org/2020.wmt-1.63
- DOI:
- Bibkey:
- Cite (ACL):
- Minh Quang Pham, Jitao Xu, Josep Crego, François Yvon, and Jean Senellart. 2020. Priming Neural Machine Translation. In Proceedings of the Fifth Conference on Machine Translation, pages 516–527, Online. Association for Computational Linguistics.
- Cite (Informal):
- Priming Neural Machine Translation (Pham et al., WMT 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.wmt-1.63.pdf
- Video:
- https://slideslive.com/38939637
Export citation
@inproceedings{pham-etal-2020-priming, title = "Priming Neural Machine Translation", author = "Pham, Minh Quang and Xu, Jitao and Crego, Josep and Yvon, Fran{\c{c}}ois and Senellart, Jean", editor = {Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Graham, Yvette and Guzman, Paco and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.63", pages = "516--527", abstract = "Priming is a well known and studied psychology phenomenon based on the prior presentation of one stimulus (cue) to influence the processing of a response. In this paper, we propose a framework to mimic the process of priming in the context of neural machine translation (NMT). We evaluate the effect of using similar translations as priming cues on the NMT network. We propose a method to inject priming cues into the NMT network and compare our framework to other mechanisms that perform micro-adaptation during inference. Overall, experiments conducted in a multi-domain setting confirm that adding priming cues in the NMT decoder can go a long way towards improving the translation accuracy. Besides, we show the suitability of our framework to gather valuable information for an NMT network from monolingual resources.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="pham-etal-2020-priming"> <titleInfo> <title>Priming Neural Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Minh</namePart> <namePart type="given">Quang</namePart> <namePart type="family">Pham</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jitao</namePart> <namePart type="family">Xu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Josep</namePart> <namePart type="family">Crego</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">François</namePart> <namePart type="family">Yvon</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jean</namePart> <namePart type="family">Senellart</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-11</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fifth Conference on Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Priming is a well known and studied psychology phenomenon based on the prior presentation of one stimulus (cue) to influence the processing of a response. In this paper, we propose a framework to mimic the process of priming in the context of neural machine translation (NMT). We evaluate the effect of using similar translations as priming cues on the NMT network. We propose a method to inject priming cues into the NMT network and compare our framework to other mechanisms that perform micro-adaptation during inference. Overall, experiments conducted in a multi-domain setting confirm that adding priming cues in the NMT decoder can go a long way towards improving the translation accuracy. Besides, we show the suitability of our framework to gather valuable information for an NMT network from monolingual resources.</abstract> <identifier type="citekey">pham-etal-2020-priming</identifier> <location> <url>https://aclanthology.org/2020.wmt-1.63</url> </location> <part> <date>2020-11</date> <extent unit="page"> <start>516</start> <end>527</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Priming Neural Machine Translation %A Pham, Minh Quang %A Xu, Jitao %A Crego, Josep %A Yvon, François %A Senellart, Jean %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Graham, Yvette %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %S Proceedings of the Fifth Conference on Machine Translation %D 2020 %8 November %I Association for Computational Linguistics %C Online %F pham-etal-2020-priming %X Priming is a well known and studied psychology phenomenon based on the prior presentation of one stimulus (cue) to influence the processing of a response. In this paper, we propose a framework to mimic the process of priming in the context of neural machine translation (NMT). We evaluate the effect of using similar translations as priming cues on the NMT network. We propose a method to inject priming cues into the NMT network and compare our framework to other mechanisms that perform micro-adaptation during inference. Overall, experiments conducted in a multi-domain setting confirm that adding priming cues in the NMT decoder can go a long way towards improving the translation accuracy. Besides, we show the suitability of our framework to gather valuable information for an NMT network from monolingual resources. %U https://aclanthology.org/2020.wmt-1.63 %P 516-527
Markdown (Informal)
[Priming Neural Machine Translation](https://aclanthology.org/2020.wmt-1.63) (Pham et al., WMT 2020)
- Priming Neural Machine Translation (Pham et al., WMT 2020)
ACL
- Minh Quang Pham, Jitao Xu, Josep Crego, François Yvon, and Jean Senellart. 2020. Priming Neural Machine Translation. In Proceedings of the Fifth Conference on Machine Translation, pages 516–527, Online. Association for Computational Linguistics.