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Abstract
Despite the reported success of unsupervised
machine translation, the field has yet to ex-
amine the conditions under which the meth-
ods succeed and fail. We conduct an exten-
sive empirical evaluation using dissimilar lan-
guage pairs, dissimilar domains, and diverse
datasets. We find that performance rapidly
deteriorates when source and target corpora
are from different domains, and that stochas-
ticity during embedding training can dramati-
cally affect downstream results. We advocate
for extensive empirical evaluation of unsuper-
vised MT systems to highlight failure points
and encourage continued research on the most
promising paradigms. Towards this goal, we
release our preprocessed dataset to stress-test
systems under multiple data conditions.

1 Introduction

Machine translation (MT) has progressed rapidly
since the advent of neural machine translation
(NMT) (Kalchbrenner and Blunsom, 2013; Bah-
danau et al., 2015; Sutskever et al., 2014) and is
better than ever for languages for which ample
high-quality bitext exists. Conversely, MT for low-
resource languages remains a great challenge due
to a dearth of parallel training corpora and poor
quality bitext from esoteric domains. To address
this, several authors have proposed unsupervised
MT techniques, which rely only on monolingual
text for training (e.g., Ravi and Knight, 2011; Yang
et al., 2018; Artetxe et al., 2018c; Hoshen and Wolf,
2018; Lample et al., 2018a,b; Artetxe et al., 2018b,
2019).

Recent unsupervised MT results appear promis-
ing, but they primarily report results for the high-
resource languages for which traditional MT al-
ready works well. The limits of these methods are
so far under-explored. For unsupervised MT to
be a viable path for low-resource machine transla-
tion, the field must determine (1) if it works out-
side highly-controlled environments, and (2) how

to effectively evaluate newly-proposed training
paradigms to pursue those which are promising for
real-world low-resource scenarios. Unsupervised
MT methods must work (1) on different scripts
and between dissimilar languages, (2) with im-
perfect domain alignment between source and
target corpora, (3) with a domain mismatch be-
tween training data and the test set, and (4) on the
low-quality data of real low-resource languages.
These factors reflect the real-life challenges of low-
resource translation.

Our main contribution is an extensive analysis
of unsupervised MT with regards to factors (1)-(3)
above.1 We find that (a) translation performance
rapidly deteriorates when source and target corpora
are from different domains, (b) stochasticity during
word embedding training can dramatically affect
downstream bilingual lexicon induction (BLI) and
translation performance, and (c) like in the bilin-
gual lexicon induction literature, unsupervised MT
performance declines when source and target lan-
guages are dissimilar. While (4) is not the focus of
this paper, we do observe very low performance on
an authentic low-resource language pair, corrobo-
rating previous studies (Guzmán et al., 2019).

Finally, as there are no standard evaluation pro-
tocols to ensure that unsupervised MT systems are
robust to the types of data anomalies ubiquitous
in low-resource translation settings, we advocate
for extensive empirical evaluation of unsupervised
MT systems to highlight failure points and en-
courage continued research on the most promising
paradigms.

We first discuss related work in Section 2, fol-
lowed by a detailed overview of the unsupervised
MT architecture in Section 3. In Section 4, we
discuss our research questions, followed by our
evaluation methodology and datasets in Sections 5

1We release our full dataset at http://statmt.org/
when-does-unsup-work to facilitate the stress-testing
of systems.

http://statmt.org/when-does-unsup-work
http://statmt.org/when-does-unsup-work
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and 6. Section 7 presents our findings, and Section
8 discusses the results. We conclude in Section 9.

2 Related Work

Bilingual Lexicon Induction Unsupervised MT
methods can be thought of as an end-to-end ex-
tension of work inducing bilingual lexicons from
monolingual corpora. Bilingual lexicon induction
(BLI) using non-parallel data has a rich history,
beginning with corpus statistic and decipherment
methods (e.g., Rapp, 1995; Fung, 1995; Koehn and
Knight, 2000, 2002; Haghighi et al., 2008), contin-
uing to modern neural methods to create crosslin-
gual word embeddings (e.g. Mikolov et al., 2013a;
Conneau et al., 2018, see Ruder et al. (2019) for a
survey) which form a critical component of state-
of-the-art unsupervised MT systems.

Evaluation of Embedding Spaces Søgaard et al.
(2018) determine that monolingual embedding
spaces of similar languages are not typically iso-
morphic as was previously believed, and that bilin-
gual dictionary induction “depends heavily on...
the language pair, the comparability of the mono-
lingual corpora, and the parameters of the word em-
bedding algorithms.” Vulić et al. (2019) argue that
unsupervised approaches are unsuccessful with dis-
similar languages and domains, and that unsuper-
vised performance has been overly lauded because
the conditions under which they were compared
with supervised baselines were inequitable.

While a modest body of literature has exam-
ined the quality of cross-lingual word embeddings
(CLEs) by measuring performance on BLI, Glavaš
et al. (2019) evaluate on downstream natural lan-
guage tasks, underlining the importance of full-
system evaluation. The authors conclude that “the
quality of CLE models is largely task-dependent
and that overfitting the models to the BLI task can
result in deteriorated performance in downstream
tasks.” Similarly, Doval et al. (2019) investigate
cross-lingual natural language inference.

Evaluation of Unsupervised MT Liu et al.
(2020) helpfully re-define unsupervised machine
translation into three distinct categories: (1) no
bitext whatsoever, (2) the target language pair is
linked through bitext via a pivot language, and
(3) no linkage through a pivot language, but bi-
texts exists for *some* language and the target
language. The authors analyze their multilingual
pretraining method with respect to other similar

training paradigms (Conneau and Lample, 2019;
Song et al., 2019) and evaluate unsupervised MT
performance when using backtranslation (Defini-
tion 1) or language transfer after finetuning on re-
lated bitext (Definition 3).

In unsupervised MT with no bitext, Lample et al.
(2018b) ablate their PBSMT system, finding that
initial phrase table quality is critical and that perfor-
mance suffers when the language model is trained
with less data. They tweak their NMT embed-
ding initialization method, such as using separately-
trained BPE instead of joint, and word embeddings
instead of BPE token embeddings. They report
the results of dropping part of their loss function
and making minor changes to the NMT architec-
ture on downstream BLEU score. Concurrently to
our work, Kim et al. (2020) arrived at similar con-
clusions to us using a different autoencoder/dual-
learning unsupervised MT approach based on cross-
lingual language model pretraining (Conneau and
Lample, 2019); this complements our experiments
and corroborates our results.

3 Background: Unsupervised MT

Our experiments employ the models of Artetxe
et al. (2018b, 2019) as representative of state-of-
the-art for the class of unsupervised MT methods
that bootstrap from cross-lingual word embeddings.
Recent work such as Lample et al. (2018b) is based
on similar concepts. For our purposes, unsuper-
vised MT follows Liu et al. (2020)’s Definition (1)
from Section 2, where no bitext exists.

Another approach to unsupervised MT involves
pretraining a bilingual or multilingual model on
monolingual text on a general task before finetun-
ing on translation. Such methods include cross-
lingual language model pretraining (Conneau and
Lample, 2019), masked sequence-to-sequence pre-
training (Song et al., 2019), and multilingual de-
noising pretraining (Liu et al., 2020), and have
shown promise. For instance, Liu et al. (2020)
record the first good results on the low-resource
Sinhala-English and Nepali-English pairs. While
pretraining and multilingual methods are not the
subject of this work, they warrant future evaluation.

Figure 1 depicts the basic training process. It is
the publicly-available SMT setup of Artetxe et al.
(2018b)2, plus the “NMT hybridization” steps from
Artetxe et al. (2019).3

2https://github.com/artetxem/monoses
3Shared with us by Mikel Artetxe.

https://github.com/artetxem/monoses
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Figure 1: The unsupervised MT architecture used in
this work. This model is a replication of Artetxe et al.
(2018b) [steps before NMT] and Artetxe et al. (2019)
[NMT component].

Training begins with two monolingual corpora
which are not necessarily related in any way (i.e.
they are not assumed to be parallel nor comparable
text). First, word embeddings are trained indepen-
dently for each corpus, resulting in a source and a
target embedding space. Specifically, after prepro-
cessing, Artetxe et al. (2018b) train two statistical
language models using KenLM (Heafield, 2011),
one for the source language and one for the tar-
get. They use phrase2vec4 (Artetxe et al., 2018b),
an extension of Mikolov et al. (2013b)’s skip-gram
model,5 to generate phrase embeddings for 200,000
unigrams, 400,000 bigrams, and 400,000 trigrams.

Next, source and target word embeddings are
aligned into a common cross-lingual embedding
space. They run VecMap6 (Artetxe et al., 2018a)
which calculates a linear mapping of one space
to another based on the intuition that phrases
with similar meaning should have similar neigh-
bors regardless of language. Given a matrix of
source word embeddingsX and target word embed-
dings Z which have been length-normalized, mean-
centered, then length-normalized again, VecMap
calculates Mx = XXT and Mz = ZZT . Each
cellMxij andMzij is the cosine similarity between
words Xi and Xj , and Zi and Zj , respectively. Mx

and Mz are symmetric, and if the monolingual vec-
tor spaces were fully isometric, Mx and Mz would
be identical besides rows and columns being per-
muted. Each row of Mx and Mz is a similarity
distribution. To exploit this, each row of

√
Mx and

4https://github.com/artetxem/
phrase2vec

5https://github.com/tmikolov/word2vec
6https://github.com/artetxem/vecmap

√
Mz is sorted (they find that using the square root

works better empirically), and length-normalized,
mean-centered, and length-normalized again. For
each row i in sorted(

√
Mx), they find the row j of

sorted(
√
Mz) that is its nearest neighbor, and as-

signXi = Zj in the initial translation dictionaryD.
A cellDij = 1 if wordsXi, and Zj are translations
of one another, and 0 otherwise.

Next, there is an iterative process of calculating
the optimal linear mappings and extracting an up-
dated dictionary. For calculating the mapping, the
goal is to find the linear transformations Wx and
Wz which maximize the cosine similarity of the
words that are translations of one another as defined
by the dictionary D, over the entire dictionary:

arg max
Wx,Wz

∑
i

∑
j

(Dij)((XiWx) · (ZjWz))

From there, they calculate M = XWxW
T
z Z

T ,
whereby each cell in M is the cosine similarity
of word Xi and Zj after their transformations with
Wx and Wz . To avoid poor local optima, they
stochastically zero-out some cells of M with prob-
ability p = 0.9, decreasing over time.

The final score for each potential translation can-
didate is calculated using Cross-domain Similarity
Local Scaling (CSLS) (Conneau et al., 2018) to
mitigate the hubness problem. CSLS utilizes co-
sine similarity, which is taken from M . For each
pair of words Xi and Zj , the new dictionary cell
Dij = 1 if the CSLS score between Xi and Zj is
the highest over all other words in Z, and Dij = 0
otherwise. The dictionary is created in both direc-
tions, and concatenated. Readers are directed to
Artetxe et al. (2018a) for further details.

The next step extracts an initial phrase-table for
use in a SMT system. They use the softmax over
the cosine similarity of the 100 nearest-neighbors
of each source phrase embedding as the phrase
translation probabilities. This is done in both direc-
tions:

(f |e) =
e(cos(e,f)/τ)∑
f ′ e

(cos(e,f ′)/τ)

For the target embedding with the highest cosine
similarity, the phrases are aligned, and unigram
translation probabilities are multiplied to become
the lexical weighting.

Combining the preliminary phrase table with a
distortion penalty and language model produces
the initial unsupervised phrase-based SMT system
(Koehn et al., 2007). The SMT model weights

https://github.com/artetxem/phrase2vec
https://github.com/artetxem/phrase2vec
https://github.com/tmikolov/word2vec
https://github.com/artetxem/vecmap
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are tuned using a variant of MERT (Och, 2003)
designed for unsupervised scenarios, which uses
10,000 parallel sentences generated via backtransla-
tion (Sennrich et al., 2016a). The SMT model then
undergoes three rounds of iterative backtranslation.

Artetxe et al. (2019) extend their 2018 work by
adding a critical “NMT hybridization” final step,
which achieves significant gains over SMT alone.7

An NMT system is trained using backtranslated out-
put from SMT for one epoch. On the next epoch, a
small number of sentences are backtranslated with
the newly-trained NMT system and concatenated
with a slightly smaller fraction of SMT-generated
bitext. The procedure continues for 30 epochs,
gradually increasing the percentage of synthetic
training data created by the NMT system until all
of the training data is NMT-generated. The NMT
system is trained for an additional 30 epochs of iter-
ative backtranslation using data generated fully by
the NMT system of the previous epoch. The test set
is translated with beam search using an ensemble of
models saved at every tenth epoch (six total), result-
ing in BLEU scores of 33.2 and 26.4 (SacreBLEU
(Post, 2018)) on newstest2014 for French-English
and German-English, respectively.

We run Artetxe et al. (2018b, 2019)’s imple-
mentation for our experiments. Specifically, neu-
ral models are Transformer-big (Vaswani et al.,
2017) trained with fairseq (Ott et al., 2019) on
one NVIDIA GeForce GTX 1080Ti GPU. Models
use shared embeddings, the Adam optimizer with
β1 = 0.9, β2 = 0.98 (Kingma and Ba, 2015), label
smoothing, initial learning rate of 1e-07 warming
up for 4000 steps to 5e-04 before decaying, and
dropout (Srivastava et al., 2014) probability of 0.3.
We set optimizer delay to 4 to simulate 4 GPUs.

To elucidate the performance gap due to the un-
supervised architecture, we build a standard super-
vised NMT system using the same neural architec-
ture described above. We train until performance
on the development set ceases to improve for 10
epochs. To parallel the unsupervised setup, we
translate the test set using an ensemble of 6 models;
We perform ensemble selection by performance
on a validation set, selecting the best-performing
checkpoint along with 5 previous checkpoints.

7Readers are directed to Artetxe et al. (2019) for additional
changes that resulted in sizable BLEU (Papineni et al., 2002)
gains before the NMT phase.

4 Research Questions

Existing unsupervised translation methods work
well on languages which are similar to each other,
use the same Roman script, and have an ample
amount of monolingual news data available (which
matches the test set domain). Questions remain as
to whether unsupervised methods will be useful on
authentic low-resource settings where few or none
of the aforementioned properties hold. Namely,
does unsupervised MT work with:

• dissimilar languages?

• dissimilar source and target domains?

• diverse datasets?

• authentic low-resource language pairs?

Such questions reflect the reality of authentic
low-resource translation, and are those which must
be adequately resolved for unsupervised MT to be a
viable alternative to traditional translation methods
for the most difficult language pairs.

5 Evaluation of Unsupervised MT

We perform an extensive empirical evaluation of
unsupervised MT. Our evaluation protocol stress-
tests an unsupervised MT system under varying
conditions to reveal its points of strength and fail-
ure. Systems should be judged on how well they
perform: (1) on dissimilar languages, (2) on in-
creasingly divergent domains between source and
target corpora, (3) on diverse datasets, and (4) on
authentic low-resource language pairs where data
quality is typically low. Namely, we:

1. Choose 2 language pairs, at least one of which
where the source and target languages utilize
different scripts.

2. Choose 3 datasets of different domains, at
least one of which is parallel bitext.

3. Perform at least one experiment for each lan-
guage pair under each of the following data
conditions:

• Originally parallel
• Not originally parallel
• Different domain for source and target.

4. Choose 2 true low-resource language pairs.
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5. Judge the system based on performance in all
tested scenarios.

The data conditions above are designed measure
how well a system performs in regards to the re-
search questions of Section 4. Namely, success on
a variety of languages with different scripts and lin-
guistic structure indicates robustness to dissimilar
languages; success on multiple datasets of different
domains indicates that the system is not specifi-
cally designed for one domain at the expense of
others, and performs well even when training and
test data do not match perfectly; Step #3 evaluates
performance on increasingly divergent domains be-
tween source and target data; and Step #4 is the
true test—whether the system succeeds on authen-
tic low-resource language pairs.

6 Datasets

Training datasets used in our reinvestigation of the
unsupervised MT system presented in Artetxe et al.
(2019) are shown in Table 1. We focus on Russian-
English (Ru-En) and French-English (Fr-En) tasks
and include as reference Sinhala-English (Si-En)
and Nepali-English (Ne-En) as well. Following
Section 5, we evaluate the same system under vari-
ous ablated data setups:

• The “Supervised” condition is the standard
MT training setup which uses parallel bitext.

• In the “Parallel” condition, an unsupervised
MT system is trained on a corpus that was
originally parallel (i.e. UN corpus), now being
treated as two separate monolingual corpora.

• In contrast, the “Disjoint” setting splits data
from a parallel corpus into two disjoint halves,
using the first half of the source-side corpus
and the second half of the target-side corpus.

• In the “Different Domain” (Diff. Dom.) set-
ting, source and target monolingual corpora
come from different domains. This is a real-
istic setting in low-resource scenarios, and is
expected to be much more difficult than the
“Disjoint” setting.

• “News crawl” (News) and “Common Crawl”
(CC) settings determine whether the system
can flexibly handle diverse datasets.

Specifics of the datasets used are described in sub-
sequent subsections. Token counts presented in

Condition Corpus Src Trg
Repro Fr-En News 694 1940

En-Fr News 1940 694
Supervised Fr-En UN: A 346 301

Ru-En UN: A 284 284
Parallel Fr-En UN: A 302 270

Ru-En UN: A 232 241
Disjoint Fr-En UN: A / B 302 255

Ru-En UN: A / B 232 236
Diff. Dom. Fr-En UN: A / CC 302 226

Ru-En UN: A / CC 232 226
News Fr-En News 116 105

Ru-En News 120 105
CC Fr-En CC 110 79

Ru-En CC 115 79

Table 1: Training data after preprocessing. UN =
United Nations, CC = Common Crawl, News = News
crawl. “Diff. Dom.” uses UN on the source-side and
CC on the target-side. “News” is a subset of 2007-08
for En, 2007-09 for Fr, and 2008-11 for Ru. “Repro”
is the condition most similar to (Artetxe et al., 2018b,
2019). Src (M) and Trg (M) columns are the token
counts, in millions. “Supervised” count is in BPE to-
kens. All others are token counts for SMT (pre-BPE).

the subsections below are before preprocessing,
whereas Table 1 reflects the data remaining after the
preprocessing procedure of Artetxe et al. (2018b).
We will release the preprocessed data splits for
others to compare their results with ours.

6.1 United Nations

The United Nations Parallel Corpus (UN) (Ziemski
et al., 2016) contains official United Nations docu-
ments from 1990-2014, human-translated into six
languages. The first 10,000 lines of each dataset
are held-out. The remaining lines are partitioned
into training sets A & B. Training set A on the
source side and A on the target side are paired to
form the Parallel training set; Training set A on the
source side and B on the target side are paired to
form the Disjoint training set.

6.2 News Crawl

News crawl (News) consists of monolingual data
crawled from news websites. Data for each year
has been shuffled. Following Artetxe et al. (2018b),
we concatenate News crawl 2007-13 for English
and for French. For Russian, we concatenate News
crawl 2008-18. We use the deduplicated Russian
corpus. We use the full datasets to reproduce
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Artetxe et al. (2018b, 2019)’s work. For subse-
quent experiments, we use a subset: the first 100
million tokens from each concatenated News crawl
corpus before preprocessing. For English, this is
all of News crawl 2007 and ∼23.3 million tokens
from News crawl 2008. For French, it is News
crawl 2007, 2008, and some of 2009. For Russian,
it is News crawl 2008-2010, and some of 2011.

6.3 Common Crawl
The Common Crawl (CC) corpora consists of web-
scraped monolingual data ordered as documents.
We extract two training datasets from the English
corpus - one with the first ∼291 million tokens
and another with the first ∼100 million for Diff.
Dom and CC experiments, respectively. We do not
shuffle this data, as having less documents better
simulates real low-resource settings. Sinhala and
Nepali contain approximately 103 million and 110
million tokens, as used in Guzmán et al. (2019).
We additionally extract the first 100 million French
and Russian tokens for CC experiments.

6.4 Preprocessing
Training data is preprocessed separately for each
unsupervised experiment as part of Artetxe et al.
(2018b)’s training pipeline. Data is deduplicated,
and tokenized and truecased using scripts from
Moses (Koehn et al., 2007). Sentences with less
than 3 tokens or more than 80 tokens are dis-
carded, and sentences are shuffled. Ten thousand
sentences are removed to form a development set.
To begin the NMT phase, a joint BPE (Sennrich
et al., 2016b) vocabulary of 32000 tokens is learned.
Source- and target-side corpora are backtranslated
using the final model from the SMT phase, and all
data then has BPE applied.8

For supervised experiments, training data is to-
kenized and truecased, and then a joint BPE (Sen-
nrich et al., 2016b) vocabulary of 32000 tokens is
learned. After applying BPE, the data is cleaned us-
ing Moses’ clean-corpus-n.perl, discard-
ing sentences under 3 and greater than 80 tokens.

6.5 Vocabulary Overlap of Training Sets
A vocabulary of unigrams was collected for each
target-side (English) corpus, which includes tokens
that appear at least 10 times, for a maximum of
200,000 unigrams. Of approximately 144,000 such
unique tokens between UN-A and UN-B from the

8Some experiments had Moses’ clean-corpus-n.
perl applied after this.

Fr-En UN corpus, the corpora share 54.1%. These
corpora are used in the Disjoint condition. The
respective vocabulary overlap for UN-A and CC
from the Diff. Dom condition for Fr-En is 25.7%.
For UN-B vs. CC for Fr-En, they share 25.3%.
Statistics are analogous for Ru-En.

6.6 Test and Validation Sets

Ru-En models are tested on newstest2019. Fr-
En models are tested on newstest2014. Super-
vised models use newstest2018 (Ru-En) or new-
stest2013 (Fr-En) for validation. For Si-En and
Ne-En, we use the Wikipedia dev and devtest sets
from Guzmán et al. (2019).9 For supervised mod-
els, we select the ensemble with best performance
on newstest2017 (Ru-En) or newstest2012 (Fr-En).

7 Reinvestigation of Artetxe et. al.

First, we replicate Artetxe et al. (2018b, 2019),
achieving relatively comparable results (Table 2).
Differences in BLEU scores are likely attributable
to using Artetxe et al. (2018b)’s code for all steps
before the NMT phase; Artetxe et al. (2019) im-
proved upon these, but we chose to use the publicly
available code from the previous year.

Artetxe et al. (2019) This Work
Fr-En 33.2 31.1
En-Fr 33.6 32.8

Table 2: Artetxe et al. (2019)’s unsupervised MT per-
formance vs. the system in this work, which is a com-
bination of Artetxe et al. (2018b) [steps before NMT]
and Artetxe et al. (2019) [NMT component], using the
full News crawl datasets from Subsection 6.2. Scored
using SacreBLEU (Post, 2018) on newstest2014.

Next, we set up a series of experiments to as-
sess the questions posed in Section 4. Results are
presented in Tables 3 and 4.

7.1 Unsupervised Quality Loss

The Supervised (“Sup.”) column of Table 3 shows
performance of a standard Transformer-big archi-
tecture on parallel bitext for Ru-En and Fr-En. As-
suming that supervised translation will always out-
perform unsupervised, these scores represent a ceil-
ing to quantify how much potential quality is lost
using an unsupervised architecture.

9https://github.com/facebookresearch/
flores/raw/master/data/wikipedia_en_ne_
si_test_sets.tgz

clean-corpus-n.perl
clean-corpus-n.perl
https://github.com/facebookresearch/flores/raw/master/data/wikipedia_en_ne_si_test_sets.tgz
https://github.com/facebookresearch/flores/raw/master/data/wikipedia_en_ne_si_test_sets.tgz
https://github.com/facebookresearch/flores/raw/master/data/wikipedia_en_ne_si_test_sets.tgz
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Sup. Parallel Disjoint Diff. Dom.
Corpus A / A A / A A / B A / CC*
Ru-En 26.9 23.7 (-3.2) 21.2 (-5.7) 0.7 (-26.2)

Fr-En 29.9 27.6 (-2.3) 27.0 (-2.9) 3.9 (-26.0)

Table 3: Unsupervised MT performance on a single run
using the United Nations (UN) dataset. “Diff. Dom.”
uses UN data as source and Common Crawl (*) as tar-
get. “Sup.” is supervised with UN parallel data. A /
A refers to UN training dataset A used on the source
and target sides, for example. Scored using Sacre-
BLEU (Post, 2018) on newstest2019 (Ru-En) and new-
stest2014 (Fr-En).

.

The supervised models and those in the Parallel
column use the same datasets10 and can therefore
be directly compared. We observe a BLEU score
drop of ∼3.2 for Ru-En versus a drop of ∼2.3 for
Fr-En when using the unsupervised architecture.
This minor quality loss represents a strong result for
unsupervised MT; however, the question is whether
the results will remain strong as we gradually make
the monolingual corpora less similar.

7.2 Investigating Our Research Questions
Does unsupervised machine translation work for:

(1) Dissimilar language pairs?
We conduct experiments in French and Russian

into English. Whereas French and English share
the same Roman script and common linguistic ori-
gin, Russian is a Slavic language that uses the Cyril-
lic script. The results presented in Tables 3 and 4 in-
dicate that unsupervised MT is more difficult when
writing script and language family differs. Across
the board, we observe that the ∆BLEU between
supervised and unsupervised performance is wider
for Ru-En than for Fr-En, particularly for News and
Common Crawl datasets. For instance, whereas
Fr-En loses 2.9 BLEU in the Supervised versus
Disjoint setups (which use comparable data), Ru-
En loses 5.7 BLEU. While we acknowledge that
in general one should not compare BLEU scores
across language pairs or datasets, this gap suggests
that unsupervised MT may behave differently for
different language pairs.

(2) Dissimilar domains?
We investigate the effects of domain similarity

between source and target training corpora. For
each language, we observe the difference in perfor-

10Differences in token count are due to the different prepro-
cessing detailed in Section 6.4.

mance on Table 3 of the Parallel, Disjoint, and Diff.
Dom. columns.

Because training data in the Parallel condition
was originally parallel, these experiments have the
highest possible domain match between source and
target data. Since Disjoint data was extracted from
the same corpus but was not parallel, source and
target can be thought of as having very slightly dif-
ferent domains. We observe a minor performance
drop between Parallel and Disjoint experiments,
which is more pronounced for Ru-En.

Examining the Diff. Dom. column, however, the
performance contrast is stark. While both language
pairs obtain respectable BLEU scores in the 20s
when domains match in Parallel and Disjoint con-
ditions, performance drops sharply when training
set domains are mismatched—scoring 3.9 BLEU
for Fr-En and 0.7 for Ru-En. (A subsequent run of
Fr-En scored 17.4, addressed in Section 7.4). The
fault is not with either side of the training corpus
alone—Parallel/Disjoint experiments from Table 3
which use UN data alone and CC experiments in
Table 4 which use Common Crawl data alone per-
form acceptably—it is when the two datasets are
paired as source-target in Diff. Dom. conditions
that performance rapidly deteriorates.

(3) Diverse datasets?

UN News CC
Ru-En 21.2 16.1 13.8
Fr-En 27.0 28.2 22.4
Si-En n/a n/a 0.2
Ne-En n/a n/a 0.4

Table 4: Unsupervised MT performance on a single run
using diverse datasets [UN = United Nations (Disjoint),
News = News Crawl, CC = Common Crawl]. Scored
using SacreBLEU (Post, 2018) on newstest2019 (Ru-
En), newstest2014 (Fr-En), and the FLoRes Wikipedia
evaluation sets (Si-En, Ne-En) (Guzmán et al., 2019).

Table 4 shows the results of experiments us-
ing three different training datasets. News crawl
matches the domain of the test set exactly. UN
data has a moderate domain match with the test
set, and CC matches the least. Not unexpectedly,
most experiments where training and test domain
match perform better than when there is a domain
mismatch. The exception is the News experiment
for Ru-En, where the model performs consider-
ably worse than the UN condition despite having a
stronger domain match. Notably, News has approx-
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imately 2-3x less data than UN for each language
pair. We suspect that for Fr-En, the relative ease
of unsupervised translation for this language pair
allowed the strong domain match with the test set
to outweigh the lower amount of data. On the other
hand, the relative difficulty of unsupervised MT
in Ru-En made the system suffer too greatly in
the lower-resource condition, to where it could not
compensate with domain match.

(4) A true low-resource pair?
Facebook recently released test sets for Sinhala-

English and Nepali-English, true low-resource lan-
guage pairs which not only lack bitext, but mono-
lingual data is of poor quality. These languages do
not share a script or language family with English,
and the data is out-of-domain with the English data.
This reflects a real-world low-resource scenario
where we would hope to benefit from unsupervised
MT. We observe extremely poor results in Table 4,
with Si-En achieving a BLEU score of 0.2, and 0.4
for Ne-En. Guzmán et al. (2019) achieve similarly
poor results for these language pairs without using
supplemental data from a related language.

7.3 BLEU During Training
Figure 2 shows translation performance for the ex-
periments in Tables 3 and 4 at various steps dur-
ing the unsupervised machine translation pipeline.
Most SMT models improve performance slightly
as a result of unsupervised MERT tuning, and more
substantially after three rounds of iterative back-
translation. Substantial improvement occurs as a
result of NMT training for all models except the
degenerate Diff. Dom conditions.

Figure 2: BLEU score during training.

7.4 Training Stability
One challenge with unsupervised methods is train-
ing stability: stochasticity during training can give

Condition Min Max µ σ

En-Fr Repro 33.08 42.47 40.86 2.5
Fr-En Repro 45.21 46.92 46.06 0.47

Parallel 48.0 50.2 49.09 0.69
Disjoint 37.88 39.09 38.47 0.37
Diff. Dom. 0.0 17.27 7.97 7.95
News 25.86 28.1 26.97 0.56
CC 25.87 27.6 26.9 0.51

Ru-En Parallel 32.24 34.04 32.95 0.47
Disjoint 25.08 26.96 25.79 0.58
Diff. Dom. 0.0 0.1 0.01 0.03
News 22.19 23.77 23.1 0.44
CC 0.0 24.69 12.61 11.45

Table 5: Accuracies (%) of induced dictionaries on 10-
11 runs. Bold experiments were severely unstable.

substantially different results due to the iterative
bootstrap nature of the training process.

In their analysis of unsupervised methods for
generating CLEs, Glavaš et al. (2019) note consid-
erable instability in performance on BLI. Defining
failure as having a mean average precision (MAP)
of <0.05 on all training runs, Iterative Closest
Point (Hoshen and Wolf, 2018) fails for ∼21%
of language pairs, Gromov-Wasserstein Alignment
(Alvarez-Melis and Jaakkola, 2018) for∼46%, and
MUSE (Conneau et al., 2018) for ∼54%. VecMap
(Artetxe et al., 2018a) succeeds for all language
pairs, leading Glavaš et al. to deem it the most
robust. Artetxe et al. (2018a) demonstrate their
robustness over other methods in their work. When
counting successful runs as achieving >5.0% ac-
curacy, VecMap is successful 10/10 times for three
language pairs. Hartmann et al. (2019) also investi-
gate instability in vector space alignment methods.

After training phrase embeddings for each exper-
iment, we run VecMap on the generated embedding
spaces ten additional times and indeed find little
fluctuation in BLI between runs. When rerunning
the full pipeline for each experiment, however, we
observe considerable instability in two experiments
which dramatically affects downstream results.

We build a gold-standard bilingual dictionary of
2000 word pairs from Wikipedia data (Wołk and
Marasek, 2014) available publicly on OPUS (Tiede-
mann, 2012), and run the first four steps of the un-
supervised training procedure additional times for
each experiment. Table 5 contains the summary
results of 10-11 runs of each experiment.

Tables 3 and 4 present the results of the single
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first run of each experiment. Whereas the majority
have consistent accuracy on bilingual lexicon be-
tween runs as seen in Table 5, Diff. Dom. for Fr-En
and CC for Ru-En are highly unstable. The BLI
accuracy of additional runs of Fr-En Diff. Dom.
ranged between 0.0% and 17.27%. Of the initial
run and 9 subsequent, five had accuracies <0.1%,
while the other five had accuracies >15.26%. For
Ru-En CC, the run reported in Table 4 had a BLI
accuracy of 21.35%. Of eleven runs, five had an ac-
curacy <0.26%, and six had an accuracy >21.35%.

As evidence of the critical effect of BLI accu-
racy on downstream BLEU, whereas the Fr-En Diff.
Dom. run reported in Table 3 had a BLI accuracy
of 0.0%, a subsequent run of the entire training
pipeline had an accuracy of 17.08% and a final
BLEU score of 17.4. (This experiment is not in-
cluded in the summary statistics of Table 5).

The unsupervised pipeline begins with prepro-
cessing (deterministic, except shuffling and ran-
dom selection of development set), language model
training with KenLM (Heafield, 2011) (determin-
istic), followed by phrase embedding training
using phrase2vec (non-deterministic), and then
embedding space mapping with VecMap (non-
deterministic). Because performance on reruns of
VecMap alone was stable while holding the rest
of the system constant, we must conclude that the
dramatic instability is caused by either a poor em-
bedding initialization from phrase2vec/word2vec,
or VecMap’s inability to handle certain monolin-
gual vector space configurations. Apparently, the
initial formation of monolingual vector spaces dra-
matically affects VecMap’s ability to converge to
a good solution, which in turn results in highly
variable downstream translation performance.

To observe the relationship between BLI accu-
racy and downstream BLEU score, we direct the
reader to Figure 3, where BLI accuracy after the
VecMap phase of experiments from Tables 3 and 4
are displayed in relation to the final BLEU score.

8 Discussion

Except in the Diff. Dom. condition, unsupervised
MT performance for Fr-En is impressive and sug-
gests that sentence alignment may not be required
for successful MT under ideal conditions. Ru-En
results are also impressive, but show that unsuper-
vised MT still struggles when language pairs are
dissimilar, especially when data amount is reduced.

The gap between Disjoint and Diff. Dom. con-

Figure 3: Relationship between bilingual lexicon induc-
tion accuracy after VecMap mapping, and final BLEU.

ditions is perhaps the most striking result in our
experiments. It suggests that one cannot naively
collect monolingual corpora without considering
their relative domain similarity; this may be a chal-
lenge in low-resource conditions, where there is
less flexibility with data sources. Vulić et al. (2019)
make a similar claim about unsupervised CLEs,
stating “UNSUPERVISED methods are able to
yield a good solution only when there is no domain
mismatch and for the pair with two most similar lan-
guages (English-Spanish), again questioning their
robustness and portability to truly low-resource
and more challenging setups”. Furthermore, the ex-
tremely poor results of Ne-En and Si-En reflect the
reality of low-resource translation; the compound
negative effects of language dissimilarity, domain
mismatch between monolingual corpora, domain
mismatch with the test set, and low amounts of
low-quality data. It is the “worst of all worlds”—
but reflects how current models might perform on
the use cases for which they are needed. These
challenges highlight the importance of evaluating
unsupervised MT under varying realistic data con-
ditions. Our evaluation is a step towards this goal,
and identifies multiple areas for improvement.

A critical step in state-of-the-art unsupervised
MT is methods for creating CLEs. Several au-
thors have pointed out that “mapping” methods like
VecMap assume that monolingual vector spaces
are structurally similar, but that this “approximate
isomorphism assumption” is increasingly tenuous
as languages and domains diverge (Søgaard et al.,
2018; Ormazabal et al., 2019; Glavaš et al., 2019;
Vulić et al., 2019; Patra et al., 2019). Patra et al.
(2019) find this for Fr-En and Ru-En specifically,
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the languages examined in this work. Nakashole
and Flauger (2018) argue that while linearity may
hold within local “neighborhoods” of the vector
space, the global mapping is non-linear. Søgaard
et al. (2018) use their eigenvector similarity met-
ric to show a strong correlation between vector
space similarity and BLI performance. Analysis
of the CLEs from our experiments demonstrate a
relationship between BLI performance and down-
stream BLEU on the translation task. Coupled with
our empirical evidence, the works cited in this sec-
tion suggest that nonisometric vector spaces lead
to poor quality translation.

Factors observed in our experiments that lead
to lower quality translation can be attributable to
a “weak isomorphism” between the monolingual
vector spaces. Dissimilar languages means in-
creasingly different distributional characteristics
of words. Data from different domains naturally
have different word frequencies and distributional
characteristics, which become more pronounced
as domains diverge. Because mapping methods
rely on structural similarity of vector spaces, exper-
iments using either UN or CC data alone had ac-
ceptable downstream performance, where as com-
bining the datasets as source and target resulted in
extremely poor translation. We observe the criti-
cal effect of word embedding initialization on BLI
performance and downstream BLEU, suggesting
that stochasticity during word embedding creation
can cause resulting vector spaces to be more or less
isomorphic. Finally, more data can give a more
accurate distribution of words in comparison with
the true distribution in the language, leading to
a more realistic monolingual vector space. With
less data, word embeddings are dependent on the
smaller training sample, which may not match the
test set or reflect true distributional properties of the
language. Combining all of these negative factors
likely leads to highly nonisomorphic monolingual
embedding spaces, as demonstrated by the very
poor Si-En and Ne-En results.

9 Conclusion & Future Work

Progress in unsupervised MT has been impressive,
achieving performance near its supervised coun-
terparts under some scenarios. That said, evalu-
ating current approaches under broader settings
and datasets reveals that unsupervised MT strug-
gles in realistic low-resource scenarios. As stated
by Lample et al. (2018b), “It’s an open question

whether there are more effective instantiations of
these principles [underlying recent successes in
fully unsupervised MT] or other principles alto-
gether”. In this work, we find that there is room
for improvement to become robust to (1) dissim-
ilar languages pairs, (2) dissimilar domains, (3)
diverse datasets, and (4) the low-quality data of
true low-resource languages—factors ubiquitous
in low-resource language pairs for which unsuper-
vised MT is intended. We find that (a) performance
rapidly declines when source and target corpora
are from different domains, and (b) stochasticity
during word embedding training can dramatically
affect downstream translation results. The latter is
a yet unexplored research area. Future work should
also evaluate pretraining methods in bilingual and
multilingual training contexts.

Finally, we argue for extensive evaluation of un-
supervised MT systems under varying data condi-
tions to assess failure cases and encourage pursuit
of promising paradigms. Doing so is a step towards
solving the real-world problems of low-resource
machine translation.
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