@inproceedings{peng-etal-2020-huaweis,
title = "Huawei{'}s Submissions to the {WMT}20 Biomedical Translation Task",
author = "Peng, Wei and
Liu, Jianfeng and
Wang, Minghan and
Li, Liangyou and
Meng, Xupeng and
Yang, Hao and
Liu, Qun",
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.93",
pages = "857--861",
abstract = "This paper describes Huawei{'}s submissions to the WMT20 biomedical translation shared task. Apart from experimenting with finetuning on domain-specific bitexts, we explore effects of in-domain dictionaries on enhancing cross-domain neural machine translation performance. We utilize a transfer learning strategy through pre-trained machine translation models and extensive scope of engineering endeavors. Four of our ten submissions achieve state-of-the-art performance according to the official automatic evaluation results, namely translation directions on English{\textless}-{\textgreater}French, English-{\textgreater}German and English-{\textgreater}Italian.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peng-etal-2020-huaweis">
<titleInfo>
<title>Huawei’s Submissions to the WMT20 Biomedical Translation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianfeng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minghan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liangyou</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xupeng</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Conference on Machine Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes Huawei’s submissions to the WMT20 biomedical translation shared task. Apart from experimenting with finetuning on domain-specific bitexts, we explore effects of in-domain dictionaries on enhancing cross-domain neural machine translation performance. We utilize a transfer learning strategy through pre-trained machine translation models and extensive scope of engineering endeavors. Four of our ten submissions achieve state-of-the-art performance according to the official automatic evaluation results, namely translation directions on English\textless-\textgreaterFrench, English-\textgreaterGerman and English-\textgreaterItalian.</abstract>
<identifier type="citekey">peng-etal-2020-huaweis</identifier>
<location>
<url>https://aclanthology.org/2020.wmt-1.93</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>857</start>
<end>861</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Huawei’s Submissions to the WMT20 Biomedical Translation Task
%A Peng, Wei
%A Liu, Jianfeng
%A Wang, Minghan
%A Li, Liangyou
%A Meng, Xupeng
%A Yang, Hao
%A Liu, Qun
%S Proceedings of the Fifth Conference on Machine Translation
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F peng-etal-2020-huaweis
%X This paper describes Huawei’s submissions to the WMT20 biomedical translation shared task. Apart from experimenting with finetuning on domain-specific bitexts, we explore effects of in-domain dictionaries on enhancing cross-domain neural machine translation performance. We utilize a transfer learning strategy through pre-trained machine translation models and extensive scope of engineering endeavors. Four of our ten submissions achieve state-of-the-art performance according to the official automatic evaluation results, namely translation directions on English\textless-\textgreaterFrench, English-\textgreaterGerman and English-\textgreaterItalian.
%U https://aclanthology.org/2020.wmt-1.93
%P 857-861
Markdown (Informal)
[Huawei’s Submissions to the WMT20 Biomedical Translation Task](https://aclanthology.org/2020.wmt-1.93) (Peng et al., WMT 2020)
ACL