@inproceedings{miller-vosoughi-2020-big,
title = "Big Green at {WNUT} 2020 Shared Task-1: Relation Extraction as Contextualized Sequence Classification",
author = "Miller, Chris and
Vosoughi, Soroush",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.36",
doi = "10.18653/v1/2020.wnut-1.36",
pages = "281--285",
abstract = "Relation and event extraction is an important task in natural language processing. We introduce a system which uses contextualized knowledge graph completion to classify relations and events between known entities in a noisy text environment. We report results which show that our system is able to effectively extract relations and events from a dataset of wet lab protocols.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="miller-vosoughi-2020-big">
<titleInfo>
<title>Big Green at WNUT 2020 Shared Task-1: Relation Extraction as Contextualized Sequence Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soroush</namePart>
<namePart type="family">Vosoughi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Relation and event extraction is an important task in natural language processing. We introduce a system which uses contextualized knowledge graph completion to classify relations and events between known entities in a noisy text environment. We report results which show that our system is able to effectively extract relations and events from a dataset of wet lab protocols.</abstract>
<identifier type="citekey">miller-vosoughi-2020-big</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.36</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.36</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>281</start>
<end>285</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Big Green at WNUT 2020 Shared Task-1: Relation Extraction as Contextualized Sequence Classification
%A Miller, Chris
%A Vosoughi, Soroush
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F miller-vosoughi-2020-big
%X Relation and event extraction is an important task in natural language processing. We introduce a system which uses contextualized knowledge graph completion to classify relations and events between known entities in a noisy text environment. We report results which show that our system is able to effectively extract relations and events from a dataset of wet lab protocols.
%R 10.18653/v1/2020.wnut-1.36
%U https://aclanthology.org/2020.wnut-1.36
%U https://doi.org/10.18653/v1/2020.wnut-1.36
%P 281-285
Markdown (Informal)
[Big Green at WNUT 2020 Shared Task-1: Relation Extraction as Contextualized Sequence Classification](https://aclanthology.org/2020.wnut-1.36) (Miller & Vosoughi, WNUT 2020)
ACL