@inproceedings{reddy-biswal-2020-iiitbh,
title = "{IIITBH} at {WNUT}-2020 Task 2: Exploiting the best of both worlds",
author = "Reddy, Saichethan and
Biswal, Pradeep",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.46",
doi = "10.18653/v1/2020.wnut-1.46",
pages = "342--346",
abstract = "In this paper, we present IIITBH team{'}s effort to solve the second shared task of the 6th Workshop on Noisy User-generated Text (W-NUT)i.e Identification of informative COVID-19 English Tweets. The central theme of the task is to develop a system that automatically identify whether an English Tweet related to the novel coronavirus (COVID-19) is Informative or not. Our approach is based on exploiting semantic information from both max pooling and average pooling, to this end we propose two models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="reddy-biswal-2020-iiitbh">
<titleInfo>
<title>IIITBH at WNUT-2020 Task 2: Exploiting the best of both worlds</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saichethan</namePart>
<namePart type="family">Reddy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pradeep</namePart>
<namePart type="family">Biswal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present IIITBH team’s effort to solve the second shared task of the 6th Workshop on Noisy User-generated Text (W-NUT)i.e Identification of informative COVID-19 English Tweets. The central theme of the task is to develop a system that automatically identify whether an English Tweet related to the novel coronavirus (COVID-19) is Informative or not. Our approach is based on exploiting semantic information from both max pooling and average pooling, to this end we propose two models.</abstract>
<identifier type="citekey">reddy-biswal-2020-iiitbh</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.46</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.46</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>342</start>
<end>346</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IIITBH at WNUT-2020 Task 2: Exploiting the best of both worlds
%A Reddy, Saichethan
%A Biswal, Pradeep
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F reddy-biswal-2020-iiitbh
%X In this paper, we present IIITBH team’s effort to solve the second shared task of the 6th Workshop on Noisy User-generated Text (W-NUT)i.e Identification of informative COVID-19 English Tweets. The central theme of the task is to develop a system that automatically identify whether an English Tweet related to the novel coronavirus (COVID-19) is Informative or not. Our approach is based on exploiting semantic information from both max pooling and average pooling, to this end we propose two models.
%R 10.18653/v1/2020.wnut-1.46
%U https://aclanthology.org/2020.wnut-1.46
%U https://doi.org/10.18653/v1/2020.wnut-1.46
%P 342-346
Markdown (Informal)
[IIITBH at WNUT-2020 Task 2: Exploiting the best of both worlds](https://aclanthology.org/2020.wnut-1.46) (Reddy & Biswal, WNUT 2020)
ACL