@inproceedings{perrio-tayyar-madabushi-2020-cxp949,
title = "{CXP}949 at {WNUT}-2020 Task 2: Extracting Informative {COVID}-19 Tweets - {R}o{BERT}a Ensembles and The Continued Relevance of Handcrafted Features",
author = "Perrio, Calum and
Tayyar Madabushi, Harish",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.48",
doi = "10.18653/v1/2020.wnut-1.48",
pages = "352--358",
abstract = "This paper presents our submission to Task 2 of the Workshop on Noisy User-generated Text. We explore improving the performance of a pre-trained transformer-based language model fine-tuned for text classification through an ensemble implementation that makes use of corpus level information and a handcrafted feature. We test the effectiveness of including the aforementioned features in accommodating the challenges of a noisy data set centred on a specific subject outside the remit of the pre-training data. We show that inclusion of additional features can improve classification results and achieve a score within 2 points of the top performing team.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perrio-tayyar-madabushi-2020-cxp949">
<titleInfo>
<title>CXP949 at WNUT-2020 Task 2: Extracting Informative COVID-19 Tweets - RoBERTa Ensembles and The Continued Relevance of Handcrafted Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Calum</namePart>
<namePart type="family">Perrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our submission to Task 2 of the Workshop on Noisy User-generated Text. We explore improving the performance of a pre-trained transformer-based language model fine-tuned for text classification through an ensemble implementation that makes use of corpus level information and a handcrafted feature. We test the effectiveness of including the aforementioned features in accommodating the challenges of a noisy data set centred on a specific subject outside the remit of the pre-training data. We show that inclusion of additional features can improve classification results and achieve a score within 2 points of the top performing team.</abstract>
<identifier type="citekey">perrio-tayyar-madabushi-2020-cxp949</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.48</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.48</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>352</start>
<end>358</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CXP949 at WNUT-2020 Task 2: Extracting Informative COVID-19 Tweets - RoBERTa Ensembles and The Continued Relevance of Handcrafted Features
%A Perrio, Calum
%A Tayyar Madabushi, Harish
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F perrio-tayyar-madabushi-2020-cxp949
%X This paper presents our submission to Task 2 of the Workshop on Noisy User-generated Text. We explore improving the performance of a pre-trained transformer-based language model fine-tuned for text classification through an ensemble implementation that makes use of corpus level information and a handcrafted feature. We test the effectiveness of including the aforementioned features in accommodating the challenges of a noisy data set centred on a specific subject outside the remit of the pre-training data. We show that inclusion of additional features can improve classification results and achieve a score within 2 points of the top performing team.
%R 10.18653/v1/2020.wnut-1.48
%U https://aclanthology.org/2020.wnut-1.48
%U https://doi.org/10.18653/v1/2020.wnut-1.48
%P 352-358
Markdown (Informal)
[CXP949 at WNUT-2020 Task 2: Extracting Informative COVID-19 Tweets - RoBERTa Ensembles and The Continued Relevance of Handcrafted Features](https://aclanthology.org/2020.wnut-1.48) (Perrio & Tayyar Madabushi, WNUT 2020)
ACL