@inproceedings{kumar-singh-2020-nutcracker,
title = "{N}ut{C}racker at {WNUT}-2020 Task 2: Robustly Identifying Informative {COVID}-19 Tweets using Ensembling and Adversarial Training",
author = "Kumar, Priyanshu and
Singh, Aadarsh",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.57",
doi = "10.18653/v1/2020.wnut-1.57",
pages = "404--408",
abstract = "We experiment with COVID-Twitter-BERT and RoBERTa models to identify informative COVID-19 tweets. We further experiment with adversarial training to make our models robust. The ensemble of COVID-Twitter-BERT and RoBERTa obtains a F1-score of 0.9096 (on the positive class) on the test data of WNUT-2020 Task 2 and ranks 1st on the leaderboard. The ensemble of the models trained using adversarial training also produces similar result.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-singh-2020-nutcracker">
<titleInfo>
<title>NutCracker at WNUT-2020 Task 2: Robustly Identifying Informative COVID-19 Tweets using Ensembling and Adversarial Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Priyanshu</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aadarsh</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We experiment with COVID-Twitter-BERT and RoBERTa models to identify informative COVID-19 tweets. We further experiment with adversarial training to make our models robust. The ensemble of COVID-Twitter-BERT and RoBERTa obtains a F1-score of 0.9096 (on the positive class) on the test data of WNUT-2020 Task 2 and ranks 1st on the leaderboard. The ensemble of the models trained using adversarial training also produces similar result.</abstract>
<identifier type="citekey">kumar-singh-2020-nutcracker</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.57</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.57</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>404</start>
<end>408</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NutCracker at WNUT-2020 Task 2: Robustly Identifying Informative COVID-19 Tweets using Ensembling and Adversarial Training
%A Kumar, Priyanshu
%A Singh, Aadarsh
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F kumar-singh-2020-nutcracker
%X We experiment with COVID-Twitter-BERT and RoBERTa models to identify informative COVID-19 tweets. We further experiment with adversarial training to make our models robust. The ensemble of COVID-Twitter-BERT and RoBERTa obtains a F1-score of 0.9096 (on the positive class) on the test data of WNUT-2020 Task 2 and ranks 1st on the leaderboard. The ensemble of the models trained using adversarial training also produces similar result.
%R 10.18653/v1/2020.wnut-1.57
%U https://aclanthology.org/2020.wnut-1.57
%U https://doi.org/10.18653/v1/2020.wnut-1.57
%P 404-408
Markdown (Informal)
[NutCracker at WNUT-2020 Task 2: Robustly Identifying Informative COVID-19 Tweets using Ensembling and Adversarial Training](https://aclanthology.org/2020.wnut-1.57) (Kumar & Singh, WNUT 2020)
ACL