@inproceedings{fayoumi-yeniterzi-2020-su,
title = "{SU}-{NLP} at {WNUT}-2020 Task 2: The Ensemble Models",
author = "Fayoumi, Kenan and
Yeniterzi, Reyyan",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.61",
doi = "10.18653/v1/2020.wnut-1.61",
pages = "423--427",
abstract = "In this paper, we address the problem of identifying informative tweets related to COVID-19 in the form of a binary classification task as part of our submission for W-NUT 2020 Task 2. Specifically, we focus on ensembling methods to boost the classification performance of classification models such as BERT and CNN. We show that ensembling can reduce the variance in performance, specifically for BERT base models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fayoumi-yeniterzi-2020-su">
<titleInfo>
<title>SU-NLP at WNUT-2020 Task 2: The Ensemble Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kenan</namePart>
<namePart type="family">Fayoumi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reyyan</namePart>
<namePart type="family">Yeniterzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we address the problem of identifying informative tweets related to COVID-19 in the form of a binary classification task as part of our submission for W-NUT 2020 Task 2. Specifically, we focus on ensembling methods to boost the classification performance of classification models such as BERT and CNN. We show that ensembling can reduce the variance in performance, specifically for BERT base models.</abstract>
<identifier type="citekey">fayoumi-yeniterzi-2020-su</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.61</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.61</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>423</start>
<end>427</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SU-NLP at WNUT-2020 Task 2: The Ensemble Models
%A Fayoumi, Kenan
%A Yeniterzi, Reyyan
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F fayoumi-yeniterzi-2020-su
%X In this paper, we address the problem of identifying informative tweets related to COVID-19 in the form of a binary classification task as part of our submission for W-NUT 2020 Task 2. Specifically, we focus on ensembling methods to boost the classification performance of classification models such as BERT and CNN. We show that ensembling can reduce the variance in performance, specifically for BERT base models.
%R 10.18653/v1/2020.wnut-1.61
%U https://aclanthology.org/2020.wnut-1.61
%U https://doi.org/10.18653/v1/2020.wnut-1.61
%P 423-427
Markdown (Informal)
[SU-NLP at WNUT-2020 Task 2: The Ensemble Models](https://aclanthology.org/2020.wnut-1.61) (Fayoumi & Yeniterzi, WNUT 2020)
ACL
- Kenan Fayoumi and Reyyan Yeniterzi. 2020. SU-NLP at WNUT-2020 Task 2: The Ensemble Models. In Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020), pages 423–427, Online. Association for Computational Linguistics.