@inproceedings{pelrine-etal-2020-complexdatalab,
title = "{C}omplex{D}ata{L}ab at {W}-{NUT} 2020 Task 2: Detecting Informative {COVID}-19 Tweets by Attending over Linked Documents",
author = "Pelrine, Kellin and
Danovitch, Jacob and
Orozco Camacho, Albert and
Rabbany, Reihaneh",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.63",
doi = "10.18653/v1/2020.wnut-1.63",
pages = "434--439",
abstract = "Given the global scale of COVID-19 and the flood of social media content related to it, how can we find informative discussions? We present Gapformer, which effectively classifies content as informative or not. It reformulates the problem as graph classification, drawing on not only the tweet but connected webpages and entities. We leverage a pre-trained language model as well as the connections between nodes to learn a pooled representation for each document network. We show it outperforms several competitive baselines and present ablation studies supporting the benefit of the linked information. Code is available on Github.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pelrine-etal-2020-complexdatalab">
<titleInfo>
<title>ComplexDataLab at W-NUT 2020 Task 2: Detecting Informative COVID-19 Tweets by Attending over Linked Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kellin</namePart>
<namePart type="family">Pelrine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Danovitch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Orozco Camacho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reihaneh</namePart>
<namePart type="family">Rabbany</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Given the global scale of COVID-19 and the flood of social media content related to it, how can we find informative discussions? We present Gapformer, which effectively classifies content as informative or not. It reformulates the problem as graph classification, drawing on not only the tweet but connected webpages and entities. We leverage a pre-trained language model as well as the connections between nodes to learn a pooled representation for each document network. We show it outperforms several competitive baselines and present ablation studies supporting the benefit of the linked information. Code is available on Github.</abstract>
<identifier type="citekey">pelrine-etal-2020-complexdatalab</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.63</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.63</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>434</start>
<end>439</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ComplexDataLab at W-NUT 2020 Task 2: Detecting Informative COVID-19 Tweets by Attending over Linked Documents
%A Pelrine, Kellin
%A Danovitch, Jacob
%A Orozco Camacho, Albert
%A Rabbany, Reihaneh
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F pelrine-etal-2020-complexdatalab
%X Given the global scale of COVID-19 and the flood of social media content related to it, how can we find informative discussions? We present Gapformer, which effectively classifies content as informative or not. It reformulates the problem as graph classification, drawing on not only the tweet but connected webpages and entities. We leverage a pre-trained language model as well as the connections between nodes to learn a pooled representation for each document network. We show it outperforms several competitive baselines and present ablation studies supporting the benefit of the linked information. Code is available on Github.
%R 10.18653/v1/2020.wnut-1.63
%U https://aclanthology.org/2020.wnut-1.63
%U https://doi.org/10.18653/v1/2020.wnut-1.63
%P 434-439
Markdown (Informal)
[ComplexDataLab at W-NUT 2020 Task 2: Detecting Informative COVID-19 Tweets by Attending over Linked Documents](https://aclanthology.org/2020.wnut-1.63) (Pelrine et al., WNUT 2020)
ACL