@inproceedings{m-s-p-j-a-2020-nit,
title = "{NIT}{\_}{COVID}-19 at {WNUT}-2020 Task 2: Deep Learning Model {R}o{BERT}a for Identify Informative {COVID}-19 {E}nglish Tweets",
author = "M S, Jagadeesh and
P J A, Alphonse",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.66",
doi = "10.18653/v1/2020.wnut-1.66",
pages = "450--454",
abstract = "This paper presents the model submitted by NIT COVID-19 team for identified informative COVID-19 English tweets at WNUT-2020 Task2. This shared task addresses the problem of automatically identifying whether an English tweet related to informative (novel coronavirus) or not. These informative tweets provide information about recovered, confirmed, suspected, and death cases as well as location or travel history of the cases. The proposed approach includes pre-processing techniques and pre-trained RoBERTa with suitable hyperparameters for English coronavirus tweet classification. The performance achieved by the proposed model for shared task WNUT 2020 Task2 is 89.14{\%} in the F1-score metric.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="m-s-p-j-a-2020-nit">
<titleInfo>
<title>NIT_COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for Identify Informative COVID-19 English Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jagadeesh</namePart>
<namePart type="family">M S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alphonse</namePart>
<namePart type="family">P J A</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the model submitted by NIT COVID-19 team for identified informative COVID-19 English tweets at WNUT-2020 Task2. This shared task addresses the problem of automatically identifying whether an English tweet related to informative (novel coronavirus) or not. These informative tweets provide information about recovered, confirmed, suspected, and death cases as well as location or travel history of the cases. The proposed approach includes pre-processing techniques and pre-trained RoBERTa with suitable hyperparameters for English coronavirus tweet classification. The performance achieved by the proposed model for shared task WNUT 2020 Task2 is 89.14% in the F1-score metric.</abstract>
<identifier type="citekey">m-s-p-j-a-2020-nit</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.66</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.66</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>450</start>
<end>454</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NIT_COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for Identify Informative COVID-19 English Tweets
%A M S, Jagadeesh
%A P J A, Alphonse
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F m-s-p-j-a-2020-nit
%X This paper presents the model submitted by NIT COVID-19 team for identified informative COVID-19 English tweets at WNUT-2020 Task2. This shared task addresses the problem of automatically identifying whether an English tweet related to informative (novel coronavirus) or not. These informative tweets provide information about recovered, confirmed, suspected, and death cases as well as location or travel history of the cases. The proposed approach includes pre-processing techniques and pre-trained RoBERTa with suitable hyperparameters for English coronavirus tweet classification. The performance achieved by the proposed model for shared task WNUT 2020 Task2 is 89.14% in the F1-score metric.
%R 10.18653/v1/2020.wnut-1.66
%U https://aclanthology.org/2020.wnut-1.66
%U https://doi.org/10.18653/v1/2020.wnut-1.66
%P 450-454
Markdown (Informal)
[NIT_COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for Identify Informative COVID-19 English Tweets](https://aclanthology.org/2020.wnut-1.66) (M S & P J A, WNUT 2020)
ACL