@inproceedings{prakash-babu-eswari-2020-cia,
title = "{CIA}{\_}{NITT} at {WNUT}-2020 Task 2: Classification of {COVID}-19 Tweets Using Pre-trained Language Models",
author = "Prakash Babu, Yandrapati and
Eswari, Rajagopal",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.70",
doi = "10.18653/v1/2020.wnut-1.70",
pages = "471--474",
abstract = "This paper presents our models for WNUT2020 shared task2. The shared task2 involves identification of COVID-19 related informative tweets. We treat this as binary text clas-sification problem and experiment with pre-trained language models. Our first model which is based on CT-BERT achieves F1-scoreof 88.7{\%} and second model which is an ensemble of CT-BERT, RoBERTa and SVM achieves F1-score of 88.52{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="prakash-babu-eswari-2020-cia">
<titleInfo>
<title>CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using Pre-trained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yandrapati</namePart>
<namePart type="family">Prakash Babu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajagopal</namePart>
<namePart type="family">Eswari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our models for WNUT2020 shared task2. The shared task2 involves identification of COVID-19 related informative tweets. We treat this as binary text clas-sification problem and experiment with pre-trained language models. Our first model which is based on CT-BERT achieves F1-scoreof 88.7% and second model which is an ensemble of CT-BERT, RoBERTa and SVM achieves F1-score of 88.52%.</abstract>
<identifier type="citekey">prakash-babu-eswari-2020-cia</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.70</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.70</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>471</start>
<end>474</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using Pre-trained Language Models
%A Prakash Babu, Yandrapati
%A Eswari, Rajagopal
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F prakash-babu-eswari-2020-cia
%X This paper presents our models for WNUT2020 shared task2. The shared task2 involves identification of COVID-19 related informative tweets. We treat this as binary text clas-sification problem and experiment with pre-trained language models. Our first model which is based on CT-BERT achieves F1-scoreof 88.7% and second model which is an ensemble of CT-BERT, RoBERTa and SVM achieves F1-score of 88.52%.
%R 10.18653/v1/2020.wnut-1.70
%U https://aclanthology.org/2020.wnut-1.70
%U https://doi.org/10.18653/v1/2020.wnut-1.70
%P 471-474
Markdown (Informal)
[CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using Pre-trained Language Models](https://aclanthology.org/2020.wnut-1.70) (Prakash Babu & Eswari, WNUT 2020)
ACL