@inproceedings{putri-etal-2020-iswara,
title = "{ISWARA} at {WNUT}-2020 Task 2: Identification of Informative {COVID}-19 {E}nglish Tweets using {BERT} and {F}ast{T}ext Embeddings",
author = "Putri, Wava Carissa and
Hidayat, Rani Aulia and
Khasanah, Isnaini Nurul and
Mahendra, Rahmad",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wnut-1.74",
doi = "10.18653/v1/2020.wnut-1.74",
pages = "491--494",
abstract = "This paper presents Iswara{'}s participation in the WNUT-2020 Task 2 {``}Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings{''},which tries to classify whether a certain tweet is considered informative or not. We proposed a method that utilizes word embeddings and using word occurrence related to the topic for this task. We compare several models to get the best performance. Results show that pairing BERT with word occurrences outperforms fastText with F1-Score, precision, recall, and accuracy on test data of 76{\%}, 81{\%}, 72{\%}, and 79{\%}, respectively",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="putri-etal-2020-iswara">
<titleInfo>
<title>ISWARA at WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wava</namePart>
<namePart type="given">Carissa</namePart>
<namePart type="family">Putri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rani</namePart>
<namePart type="given">Aulia</namePart>
<namePart type="family">Hidayat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isnaini</namePart>
<namePart type="given">Nurul</namePart>
<namePart type="family">Khasanah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rahmad</namePart>
<namePart type="family">Mahendra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents Iswara’s participation in the WNUT-2020 Task 2 “Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings”,which tries to classify whether a certain tweet is considered informative or not. We proposed a method that utilizes word embeddings and using word occurrence related to the topic for this task. We compare several models to get the best performance. Results show that pairing BERT with word occurrences outperforms fastText with F1-Score, precision, recall, and accuracy on test data of 76%, 81%, 72%, and 79%, respectively</abstract>
<identifier type="citekey">putri-etal-2020-iswara</identifier>
<identifier type="doi">10.18653/v1/2020.wnut-1.74</identifier>
<location>
<url>https://aclanthology.org/2020.wnut-1.74</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>491</start>
<end>494</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ISWARA at WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings
%A Putri, Wava Carissa
%A Hidayat, Rani Aulia
%A Khasanah, Isnaini Nurul
%A Mahendra, Rahmad
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F putri-etal-2020-iswara
%X This paper presents Iswara’s participation in the WNUT-2020 Task 2 “Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings”,which tries to classify whether a certain tweet is considered informative or not. We proposed a method that utilizes word embeddings and using word occurrence related to the topic for this task. We compare several models to get the best performance. Results show that pairing BERT with word occurrences outperforms fastText with F1-Score, precision, recall, and accuracy on test data of 76%, 81%, 72%, and 79%, respectively
%R 10.18653/v1/2020.wnut-1.74
%U https://aclanthology.org/2020.wnut-1.74
%U https://doi.org/10.18653/v1/2020.wnut-1.74
%P 491-494
Markdown (Informal)
[ISWARA at WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings](https://aclanthology.org/2020.wnut-1.74) (Putri et al., WNUT 2020)
ACL