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Abstract
This paper introduces TexSmart, a text
understanding system that supports fine-
grained named entity recognition (NER)
and enhanced semantic analysis functional-
ities. Compared to most previous publicly
available text understanding systems and
tools, TexSmart holds some unique features.
First, the NER function of TexSmart sup-
ports over 1,000 entity types, while most
other public tools typically support several
to (at most) dozens of entity types. Second,
TexSmart introduces new semantic analysis
functions like semantic expansion and deep
semantic representation, that are absent in
most previous systems. Third, a spectrum
of algorithms (from very fast algorithms
to those that are relatively slow but more
accurate) are implemented for one function
in TexSmart, to fulfill the requirements of
different academic and industrial applica-
tions. The adoption of unsupervised or
weakly-supervised algorithms is especially
emphasized, with the goal of easily updat-
ing our models to include fresh data with
less human annotation efforts. 1

1 Introduction
The long-term goal of natural language process-
ing (NLP) is to help computers understand natural
language as well as we do, which is one of the
most fundamental and representative challenges
for artificial intelligence. Natural language under-
standing includes a broad variety of tasks covering
lexical analysis, syntactic analysis and semantic
analysis. In this paper we introduce TexSmart, a
new text understanding system that provides en-
hanced named entity recognition (NER) and seman-
tic analysis functionalities besides standard NLP
modules. Compared to most previous publicly-
available text understanding systems (Loper and

∗Project lead and chief architect
1TexSmart is available at https://texsmart.qq.

com/en, and the long version of this paper can be found
in the technical report (Zhang et al., 2020).

Bird, 2002; OpenNLP; Manning et al., 2014; Gard-
ner et al., 2018; Che et al., 2010; Qiu et al., 2013),
TexSmart holds the following key characteristics:

• Fine-grained named entity recognition (NER)
• Enhanced semantic analysis
• A spectrum of algorithms implemented for one

function, to fulfill the requirements of different
academic and industrial applications

First, the fine-grained NER function of TexS-
mart supports over 1,000 entity types while most
previous text understanding systems typically sup-
port several to (at most) dozens of coarse entity
types (among which the most popular types are
people, locations, and organizations). Large-scale
fine-grained entity types are expected to provide
richer semantic information for downstream NLP
applications. Figure 1 shows a comparison between
the NER results of a previous system and the fine-
grained NER results of TexSmart. It is shown
that TexSmart recognizes more entity types (e.g.,
work.movie) and finer-grained ones (e.g., loc.city
vs. the general location type). Examples of en-
tity types (and their important sub-types) which
TexSmart is able to recognize include people, lo-
cations, organizations, products, brands, creative
work, time, numerical values, living creatures, food,
drugs, diseases, academic disciplines, languages, ce-
lestial bodies, organs, events, activities, colors, etc.

Second, TexSmart provides two advanced seman-
tic analysis functionalities: semantic expansion, and
deep semantic representation for a few entity types.
These two functions are not available in most pre-
vious public text understanding systems. Semantic
expansion suggests a list of related entities for an
entity in the input sentence (as shown in Figure 1).
It provides more information about the semantic
meaning of an entity. Semantic expansion could
also benefit upper-layer applications like web search
(e.g., for query suggestion) and recommendation
systems. For time and quantity entities, in addi-
tion to recognizing them from a sentence, TexSmart
also tries to parse them into deep representations
(as shown in Figure 1). This kind of deep repre-
sentations is essential for some NLP applications.
For example, when a chatbot is processing query

https://texsmart.qq.com/en
https://texsmart.qq.com/en
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No. Entity Type ID Semantics

1 Captain Marvel work.movie
{"related":["Batman","Superman","Wonder Woman”,


"Green Lantern”,"the flash”,"Aquaman","Spider-Man",

"Green Arrow”,"Supergirl","Captain America"]}

2 Los Angeles loc.city {“related":["Toronto","Montreal","Vancouver","Ottawa",

"Calgary","London","Paris","Chicago","Edmonton","Boston"]}

3 24 months ago time.generic {“value”:[2019,3]}

Fine-grained NER Deep Semantic Expression

Semantic Expansion

No. Entity Type ID

1 Marvel person

2 Los Angeles location

3 24 months ago time

(a) (b)

Figure 1: Comparison between the NER results of a traditional text understanding system in (a) and
the fine-grained NER and semantic analysis results provided by TexSmart in (b). The input sentence is
“Captain Marvel was premiered in Los Angeles 24 months ago.”. The screenshot was taken in Mar. 2021.

“please book an air ticket to London at 4 pm the
day after tomorrow”, it needs to know the exact
time represented by “4 pm the day after tomorrow”.

Third, a spectrum of algorithms is implemented
for one task (e.g., part-of-speech tagging and NER)
in TexSmart, to fulfill the requirements of differ-
ent academic and industrial applications. On one
side of the spectrum are the algorithms that are
very fast but not necessarily the best in accuracy.
On the opposite side are those that are relatively
slow yet delivering state-of-the-art performance in
terms of accuracy. Different application scenarios
may have different requirements for efficiency and
accuracy. Unfortunately, it is often very difficult or
even impossible for a single algorithm to achieve
the best in both speed and accuracy at the same
time. With multiple algorithms implemented for
one task, we have more chances to better fulfill the
requirements of more applications.

One design principle of TexSmart is to put a lot
of efforts into designing and implementing unsuper-
vised or weakly-supervised algorithms for a task,
based on large-scale structured, semi-structured,
or unstructured data. The goal is to update our
models easier to include fresh data with less human
annotation efforts.

2 System Modules

Compared to most other public text understanding
systems, TexSmart supports three unique modules,
i.e., fine-grained NER, semantic expansion and deep
semantic representation. Besides, traditional tasks
supported by both TexSmart and many other sys-
tems include word segmentation, part-of-speech
(POS) tagging, coarse-grained NER, constituency
parsing, semantic role labeling, text classification
and text matching. Below we first introduce the
unique modules, and then describe the traditional
tasks, followed by System Usage.

2.1 Key Modules

Since the implementation of fine-grained NER de-
pends on semantic expansion, we first present se-
mantic expansion, then fine-grained NER, and fi-

nally deep semantic representation.

2.1.1 Semantic Expansion
Given an entity within a sentence, the semantic ex-
pansion module suggests a list of entities related to
the given entity. For example in Figure 1, the sug-
gestion results for “Captain Marvel” include “Spider-
Man”, “Captain America”, and other related movies.
Semantic expansion attaches additional information
to an entity mention, which could be leveraged by
upper-layer applications for better understanding
the entity and the source sentence. Possible appli-
cations of the expansion results include web search
(e.g., for query suggestion) and recommendation
systems.
Semantic expansion task was firstly introduced

in Han et al. (2020), and it was addressed by a neu-
ral method. However, this method is not as efficient
as one expected for some industrial applications.
Therefore, we propose a light-weight alternative
approach in TexSmart for this task.

This approach includes two offline steps and two
online ones, as illustrated in Figure 2. During the
offline procedure, Hearst patterns are first applied
to a large-scale text corpus to obtain a is-a map (or
called a hyponym-to-hypernym map) (Hearst, 1992;
Zhang et al., 2011). Then a clustering algorithm is
employed to build a collection of term clusters from
all the hyponyms, allowing a hyponym to belong
to multiple clusters. Each term cluster is labeled
by one or more hypernyms (or called type names).
Term similarity scores used in the clustering al-
gorithm are calculated by a combination of word
embedding, distributional similarity, and pattern-
based methods (Mikolov et al., 2013; Song et al.,
2018; Shi et al., 2010).

During the online testing time, clusters contain-
ing the target entity mention are first retrieved by
referring to the cluster collection. Generally, there
may be multiple (ambiguous) clusters containing
the target entity mention and thus it is necessary
to pick the best cluster through disambiguation.
Once the best cluster is chosen, its members (or
instances) can be returned as the expansion results.
Now the core challenge is how to calculate the
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fruits such as 

apple and banana 

Apple, Google, Microsoft 

and other companies

… …

(apple, fruit)
(banana, fruit)

(apple, company)
(google, company)

(microsoft, company)
… …

C1:({apple, banana,

peach, …}, fruit)
C2:({apple, google

microsoft,…}, 
company)

… …

“Apple juice”

C1, C2

{apple, banana, peach, …}
C1

Extraction Clustering Retrieval

Disambiguation

Offline Training Online Testing

Figure 2: Key steps for semantic expansion: extraction, clustering, retrieval and disambiguation. The
first two steps are conducted offline and the last two are performed online.

score of a cluster given an entity mention. We
choose to compute the score as the average simi-
larity score between a term in the cluster and a
term in the context of the entity mention. For-
mally, suppose e is a mention in a sentence, context
C = {c1, c2, · · · , cm} is a window of e within the
sentence, and L = {e1, e2, · · · , en} is a term cluster
containing the entity mention (i.e., e ∈ L). The
cluster score is then calculated below:

sim(C,L; e) =

1

(m− 1)× (n− 1)

∑
x∈C\{e},y∈L\{e}

cos(vx, wy) (1)

where C \ {e} means excluding a subset {e} from a
set C, vx denotes the input word embedding of x,
wy denotes the output word embedding of y from
a well-trained word embedding model, and cos is
the cosine similarity function.

2.1.2 Fine-Grained NER
Generally, it is challenging to build a fine-grained
NER system. Xu et al. (2020) create a fine-grained
NER dataset for Chinese, but the number of its
types is less than 20. A knowledge base (such as
Freebase (Bollacker et al., 2008)) is utilized in Ling
and Weld (2012) as distant supervision to obtain
a training dataset for fine-grained NER. However,
this dataset only includes about one hundred types
whereas TexSmart supports up to one thousand
types. Moreover, the fine-grained NER module in
TexSmart does not rely on any knowledge bases and
thus can be readily extended to other languages for
which there is no knowledge base available.

Ontology To establish fine-grained NER in TexS-
mart, we need to define an ontology of entity
types. The TexSmart ontology was built in a semi-
automatic way, based on the term clusters in Fig-
ure 2. Please note that each term cluster is labeled
by one or more hypernyms as type names of the
cluster. We first conduct a simple statistics over
the term clusters to get a list of popular type names
(i.e., those having a lot of corresponding term clus-
ters). Then we manually create one or more formal
types from one popular type name and add the type
name to the name list of the formal types. For ex-
ample, formal type “work.movie” is manually built

from type name “movie”, and the word “movie” is
added to the name list of “work.movie”. As another
example, formal types “language.human_lang” and
“language.programming” are manually built from
type name “language”, and the word “language” is
added to the name lists of both the two formal types.
Each formal type is also assigned with a sample in-
stance list in addition to a name list. Instances can
be chosen manually from the clusters correspond-
ing to the names of the formal type. To reduce
manual efforts, the sample instance list for every
type is often quite short. The supertype/subtype
relation between the formal types are also specified
manually. As a result, we obtain a type hierarchy
containing about 1,000 formal types, each assigned
with a standard id (e.g., work.movie), a list of
names (e.g., “movie” and “film”), and a short list of
example instances (e.g., “Star Wars”). The TexS-
mart ontology is available on the download page2.
Figure 3 shows a sub-tree (with type id “loc.generic”
as the root) sampled from the entire ontology.

Unsupervised method The unsupervised fine-
grained NER method works in two steps. First, run
the semantic expansion algorithm (referring to the
previous subsection) to get the best cluster for the
entity mention. Second, derive an entity type from
the cluster.
For the best cluster obtained in the first step,

it contains a list of terms as instances and is also
labeled with a list of hypernyms (or type names).
The final entity type id for the cluster is determined
by a type scoring algorithm. The candidate types
are those in the TexSmart ontology whose name
lists contain at least one hypernym of the cluster.
Please note that each entity type in the TexSmart
ontology has been assigned with a name list and
a sample instance list. Therefore the score of a
candidate entity type can be calculated according
to the information of the entity type and cluster.

This unsupervised method has a major drawback:
It cannot recognize unknown entity mentions (i.e.,
entity mentions that are not in any of our term
clusters).

2https://ai.tencent.com/ailab/nlp/texsmart/
en/download.html

https://ai.tencent.com/ailab/nlp/texsmart/en/download.html
https://ai.tencent.com/ailab/nlp/texsmart/en/download.html
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loc.generic

loc.geo

loc.geo.district loc.natural_geo

loc.geo.populated_place

loc.admin_division loc.country_region

loc.county_level loc.city loc.state_in_country

land_form.mountain land_form.peak land_form.plateau

loc.town

Figure 3: A sub-tree of the TexSmart ontology, with “loc.generic” as the root

Hybrid method In order to address the above
issue, we propose a hybrid method for fine-grained
NER. Its key idea is to combine the results of
the unsupervised method and those of a coarse-
grained NER model. We train a coarse-grained
NER model in a supervised manner using an off-
the-shelf training dataset (for example, Ontonotes
dataset (Weischedel et al., 2013)). Given the su-
pervised and unsupervised results, the combination
policy is as follows: If the fine-grained type is com-
patible with the coarse type, i.e., the fine-grained
one is a subtype of the coarse one, the fine-grained
type is returned; otherwise the coarse type is cho-
sen.

For example, assume that the entity mention “ap-
ple” in the sentence “...apple juice...” is determined
as “food.fruit” by the unsupervised method and
“food.generic” by the supervised model. The hy-
brid approach returns “food.fruit” according to the
above policy. However, if the unsupervised method
returns “org.company”, the hybrid approach will re-
turn “food.generic” because the two types returned
by the supervised method and the unsupervised
method are not compatible.
Although both unsupervised and hybrid meth-

ods are described on top of the ontology manually
defined above, they can actually be used for other
ontologies such as those in FIGER and Ontonotes
datasets, because most type names in these on-
tologies can be covered by our clusters obtained in
semantic expansion as long as the training data is
sufficient. In this sense, both methods are general
in practice.

2.1.3 Deep Semantic Representation
For a time or quantity entity within a sentence,
TexSmart can analyze its potential structured rep-
resentation, so as to further derive its precise se-
mantic meaning. For example in Figure 1, the deep
semantic representation given by TexSmart for “24
months ago” is a structured string with a precise
date in JSON format: {"value": [2019, 3]} if the
screenshot time was Mar. 2021. Deep semantic
representation is important for applications like
task-oriented chatbots, where the precise meanings
of some entities are required. So far, most public
text understanding tools do not provide such a fea-

ture. As a result, applications using these tools
have to implement deep semantic representation by
themselves.
Some NLP toolkits make use of regular expres-

sions or supervised sequence tagging methods to
recognize time and quantity entities. However, it is
difficult for those methods to derive structured or
deep semantic information of entities. To overcome
this problem, time and quantity entities are parsed
in TexSmart by Context Free Grammar (CFG),
which is more expressive than regular expressions.
Its key idea is similar to that in Shi et al. (2015) and
can be described as follows: First, CFG grammar
rules are manually written according to possible nat-
ural language expressions of a specific entity type.
Second, the Earley algorithm (Earley, 1970) is em-
ployed to parse a piece of text to obtain semantic
trees of entities. Finally, deep semantic represen-
tations of entities are derived from the semantic
trees.

2.2 Other Modules

Word Segmentation In order to support differ-
ent application scenarios, TexSmart provides word
segmentation results of two granularity levels: word
level (or basic level), and phrase level. For phrase-
level segmentation, some phrases (especially noun
phrases) may contained as a unit. An unsuper-
vised algorithm is implemented in TexSmart for
both English and Chinese word segmentation. We
choose an unsupervised method over supervised
ones due to two reasons. First, it is at least 10
times faster. Second, its accuracy is good enough
for most applications.

Part-of-Speech Tagging Part-of-Speech (POS)
denotes the syntactic role of each word in a sentence,
also known as word classes or syntactic categories
and it is helpful for many downstream text under-
standing tasks such as parsing (Huang, 2008; Chen
and Manning, 2014; Liu et al., 2018a). We imple-
ment three models among many popular ones for
part-of-speech tagging (Ratnaparkhi, 1996; Huang
et al., 2015; Li et al., 2021b): Log-linear based
model (Ratnaparkhi, 1996), conditional random
field (CRF) based model (Lafferty et al., 2001) and
deep neural network (DNN) based model (Akbik
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et al., 2018; Liu et al., 2019). We denote them as:
log_linear, crf and dnn, respectively.

Coarse-grained NER The difference between
fine-grained and coarse-grained NERs is that the
former involves more entity types with a finer gran-
ularity. We implement coarse-grained NER using
supervised learning methods, including conditional
random field (CRF) (Lafferty et al., 2001) based
and deep neural network (DNN) based models (Ak-
bik et al., 2018; Liu et al., 2019; Li et al., 2020).

Constituency Parsing We implement the con-
stituency parsing model based on the work (Kitaev
and Klein, 2018). Kitaev and Klein (2018) build
the parser by combining a sentence encoder with
a chart decoder based on the self-attention mecha-
nism. Different from work (Kitaev and Klein, 2018)
, we use pre-trained BERT model as the text en-
coder to extract features to support the subsequent
decoder-based parsing. Our model achieves excel-
lent performance and has low search complexity.

Semantic Role Labeling Semantic role label-
ing (also called shallow semantic parsing) tries to
assign role labels to words or phrases in a sen-
tence. TexSmart takes a sequence labeling model
with BERT as the text encoder for semantic role
labeling similar to Shi and Lin (2019). TexSmart
supports semantic role labeling on both Chinese
and English texts.

Text Classification Text Classification aims to
assign a semantic label for an input text among a
predefined label set. Text Classification is a clas-
sical task in NLP and it has been widely used in
many applications, such as spam filtering, sentiment
analysis and question classification. The predefined
label set in TexSmart is available on the web page.3

Text Matching We implement two text match-
ing algorithms in TexSmart: Linkage and ESIM
(Chen et al., 2017). Linkage is an unsupervised
algorithm designed by ourselves that incorporates
synonymy information and word embedding knowl-
edge to compute semantic similarity. Different from
the previous models with complicated network ar-
chitectures, ESIM carefully designs the sequential
model with both local and global inference based
on chain LSTMs and outperforms the counterparts.

3 System Usage

Two ways are available to use TexSmart: Calling
the HTTP API directly, or downloading one version
of the offline SDK. Note that for the same input
text, the results from the HTTP API and the SDK
may be slightly different, because the HTTP API
employs a larger knowledge base and supports more

3https://ai.tencent.com/ailab/nlp/texsmart/
table_html/tc_label_set.html.

text understanding tasks and algorithms. The de-
tailed comparison between the SDK and the HTTP
API is available in https://ai.tencent.com/
ailab/nlp/texsmart/en/instructions.html.
Offline Toolkit (SDK) So far the SDK sup-
ports Linux, Windows, and Windows Subsystem
for Linux (WSL). Mac OS support will be added in
v0.3.0. Programming languages supported include
C, C++, Python (both version 2 and version 3) and
Java (version ≥ 1.6.0). Example codes for using the
SDK with different programming languages are in
the ./examples sub-folder. For example, the Python
codes in ./examples/python/en_nlu_example1.py
show how to use the TexSmart SDK to process
an English sentence. The C++ codes in ./exam-
ples/c_cpp/src/nlu_cpp_example1.cc show how
to use the SDK to analyze both an English sentence
and a Chinese sentence.
HTTP API The HTTP API of TexSmart con-
tains two parts: the text understanding API and
the text matching API. The text understanding API
can be accessed via HTTP-POST and the URL is
available on the web page.4 The text matching
API is used to calculate the similarity between a
pair of sentences. Similar to the text understanding
API, the text matching API also supports access
via HTTP-POST and the URL is available on the
web page.5

4 System Evaluation
4.1 Settings
Semantic Expansion The performance of se-
mantic expansion are evaluated based on human
annotation. We first select at random 5,000
<sentence, entity mention> pairs (called SE
pairs) from our test set of NER (to make sure
that the entities selected are correct). Then our
semantic expansion algorithm is applied to the SE
pairs to generate a related-entity list for each pair.
Top nine expansion results of each SE pair are then
judged by human annotators in terms of quality
and relatedness, with each result annotated by two
annotators. For each result, a label of 2, 1, or 0 is
assigned by each annotator. The three labels mean
“highly related”, “slightly related”, and “not related”
respectively. In calculating evaluation scores, the
three labels are normalized to scores 100, 50, and
0 respectively. As there is no context for each
expanded entity, it is challenging for human to an-
notate its ground-truth label. In fact, the overall
disagreement rate between two annotators is 23.5%.
To measure the quality of our model, we report the
average score according to both annotators.
Fine-grained NER Ling and Weld (2012) pro-
vide a test set for fine-grained NER evaluation.

4https://texsmart.qq.com/api
5https://texsmart.qq.com/api/match_text.

https://ai.tencent.com/ailab/nlp/texsmart/table_html/tc_label_set.html
https://ai.tencent.com/ailab/nlp/texsmart/table_html/tc_label_set.html
https://ai.tencent.com/ailab/nlp/texsmart/en/instructions.html
https://ai.tencent.com/ailab/nlp/texsmart/en/instructions.html
https://texsmart.qq.com/api
https://texsmart.qq.com/api/match_text
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SE FGNER
ZH EN Base Hybrid

Quality 79.5 80.5 45.9 53.8

Table 1: Semantic expansion (SE) and fine-grained
NER (FGNER) evaluation results. SE is evaluated
by human annotators and FGNER is evaluated by
a variant of F1 score. Base denotes the supervised
coarse NER model.

However, this dataset only contains about 400 sen-
tences. In addition, it misses some important en-
tities during human annotation, which is a com-
mon issue in building a dataset for evaluating fine-
grained NER (Li et al., 2021a). Therefore, we
create a larger fine-grained NER dataset, based
on the Ontonotes 5.0 dataset. We ask three hu-
man annotators to label fine-grained types for each
coarse-labeled entity. Since human annotators do
not need to identify mentions from scratch, it would
mitigate the missing entities issue to some extent.
Furthermore, because it is too costly for three hu-
man annotators to annotate types from the entire
ontology, we instead take a sub-ontology for human
annotation which combines all types from Ling and
Weld (2012) and Gillick et al. (2014), including 140
types in total. Due to ambiguous entities, there
are indeed some disagreement annotations among
three annotators but their overall agreement rate
is respectful, i.e., the averaged pair-wise agreement
rate is about 87.1% in terms of Mi-F1 scores.

Parsing SRL
EN ZH EN ZH

F1 95.42 92.25 86.7 82.1
Sents/sec 16.60 16.00 10.2 11.5

Table 2: Evaluation results for constituency parsing
and SRL. The decoding speed in is measured upon
a GPU P40 machine.

To set the hybrid method for fine-grained NER,
we select LUA (Li et al., 2020) as the coarse-grained
NER model, which is trained on Ontonotes 5.0 train-
ing dataset (Weischedel et al., 2013). To compare
fine-grained NER against coarse-grained NER, we
report a variant of F1 measure for evaluation which
only differs from standard F1 in matching count ac-
cumulation: if an output type is a fine-grained type
and it exactly matches a gold fine-grained type, the
matching count accumulates 1; if an output is a
coarse grained type and it is compatible with a gold
fine-grained type, the matching count accumulates
0.5.
POS Tagging We evaluate three POS tagging
algorithms: log-linear, CRF, and DNN. They are
all trained on the standard training datasets from

PTB for English and CTB 9.0 for Chinese. We
use their corresponding test sets to evaluate all the
models.
Coarse-grained NER To ensure better gener-
alization to industrial applications, we combine
several public training sets together for English
NER. They are CoNLL2003 (Sang and De Meulder,
2003), BTC (Derczynski et al., 2016), GMB (Bos
et al., 2017), SEC_FILING (Alvarado et al., 2015),
WikiGold (Balasuriya et al., 2009; Nothman et al.,
2013), and WNUT17 (Derczynski et al., 2017).
Since the label set for all these datasets are slightly
different, we only maintain three common labels
(Person, Location and Organization) for training
and testing. For Chinese, we create a NER dataset
including about 80 thousand sentences labeled with
12 entity types, by following a similar guideline to
that of the Ontonotes dataset. We randomly split
it into a training set and a test set with ratio of
3:1. We evaluate two algorithms for coarse-grained
NER: CRF and DNN. For DNN, we implement the
RoBERTa-CRF and Flair models. As we found
RoBERTa-CRF performs better on the Chinese
dataset while Flair is better on the English dataset,
we report results of RoBERTa-CRF for Chinese
and Flair for English in our experiments.
Constituency Parsing We conduct parsing ex-
periments on both English and Chinese datasets.
For English task, we use WSJ sections in Penn
Treebank (PTB) (Marcus et al., 1993), and we
follow the standard splits: the training data ranges
from section 2 to section 21; the development data
is section 24; and the test data is section 23. For
Chinese task, we use the Penn Chinese Treebank
(CTB) of the version 5.1 (Xue et al., 2005). The
training data includes the articles 001-270 and arti-
cles 440-1151; the development data is the articles
301- 325; and the test data is the articles 271-300.
SRL Semantic role labeling experiments are con-
ducted on both English and Chinese datasets. We
use the CoNLL 2012 datasets (Pradhan et al., 2013)
and follow the standard splits for the training, de-
velopment and test sets. The network parameters
of our model are initialized using RoBERTa. The
batch size is set to 32 and the learning rate is
5×10−5.
Text Matching Two text matching algorithms
are evaluated: ESIM and Linkage. The datasets
used in evaluating English text matching are
MRPC6 and QUORA7. For Chinese text match-
ing, four datasets are involved: LCQMC (Liu
et al., 2018b), AFQMC (Xu et al., 2020),
BQ_CORPUS (Chen et al., 2018), and PAWS-
zh (Zhang et al., 2019). We evaluate the quality

6https://www.microsoft.com/en-us/download/
details.aspx?id=52398.

7https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs.

https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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POS Tagging Coarse-grained NER
Log-linear CRF DNN CRF DNN
EN ZH EN ZH EN ZH EN ZH EN ZH

F1 96.76 93.94 96.50 93.73 97.04 98.08 73.24 67.26 83.12 75.23
Sents/sec 3.9K 1.3K 149 1.1K 107

Table 3: Evaluation results for some POS Tagging and coarse-grained NER algorithms in TexSmart on
both English (EN) and Chinese (ZH) datasets. The English and Chinese NER datasets are labeled with 3
and 12 entity types respectively.

Algorithms Sents/Sec English Chinese
MRPC QUORA LCQMC AFQMC BQ_CORPUS PAWS-zh

ESIM 861 - - 82.63 51.30 71.05 61.55
Linkage 1973 82.18 74.94 79.26 48.66 71.23 62.30

Table 4: Text matching evaluation results. ESIM is a supervised algorithm and it is trained on an
in-house labeled dataset only for Chinese. Linkage is an unsupervised algorithm and it is trained for both
English and Chinese.

and speed for both ESIM and Linkage algorithms
in terms of F1 score and sentences per second, re-
spectively. Since we have not trained the English
version of ESIM yet, the corresponding evaluation
results are not reported.

4.2 Evaluation Results

Table 1 shows the evaluation results of semantic
expansion and fine-grained NER. For semantic ex-
pansion, it is shown that TexSmart achieves an
accuracy of about 80.0 on both English and Chi-
nese datasets. It is a pretty good performance. For
fine-grained NER, it is observed that the hybrid
approach performs much better than the supervised
model (LUA).
Evaluation results for constituency parsing and

semantic role labeling are summarized in Table 2.
For constituency parsing, the F1 scores on the En-
glish and Chinese test sets are 95.42 and 92.25,
respectively. The decoding speed depends on the
input sentence length. It can process 16.6 and 16.0
sentences per second on our test sets. For SRL, the
F1 scores on the English and Chinese test sets are
86.7 and 82.1 respectively and it processes about
10 sentences per second. The speed may be not
efficient enough for some applications. As future
work, we plan to design more efficient syntactic
parsing and SRL algorithms.
The evaluation results for POS Tagging and

coarse-grained NER are listed in Table 3. The
speed values in this table are measured in sen-
tences per second and they are measured upon
a machine with Platinum 8255C CPU @ 2.50GHz.
Please note that the speed results for Log-linear and
CRF are obtained using one single thread, while
the speed results for DNN are on 6 threads.

It is clear from the POS tagging results that the
three algorithms form a spectrum. On one side of

the spectrum is the log-linear algorithm, which is
very fast but less accurate than the DNN algorithm.
On the opposite side is the DNN algorithm, which
achieves the best accuracy but are much slower
than the other two algorithms. The CRF algorithm
is in the middle of the spectrum.

Also from Table 3, we can see that the two coarse-
grained NER algorithms form another spectrum.
The CRF algorithm is on the high-speed side, while
the DNN algorithm is on the high-accuracy side.
Note that for DNN methods in this table, we em-
ploy a data augmentation method to improve their
generalization abilities and a knowledge distillation
method to speed up its inference (Hinton et al.,
2015).

Table 4 shows the performance of two algorithms
for text matching. We can see from this table
that, in terms of speed, both algorithms are fairly
efficient. Please note that the speed is measured
in sentences per second using one single CPU from
a machine with Platinum 8255C CPU @ 2.50GHz.
In terms of accuracy, their performance comparison
depends on the dataset being used. ESIM performs
apparently better on the first two datasets, while
slightly worse on the last one. Applications may
need to test on their datasets before making decision
between the two algorithms.

5 Conclusion

In this paper we have presented TexSmart, a text
understanding system that supports fine-grained
NER, enhanced semantic analysis, as well as some
common text understanding functionalities. We
have introduced the main functions of TexSmart
and key algorithms for implementing the functions.
We have also reported some evaluation results on
major modules of TexSmart.
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