
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: System Demonstrations, pages 298–305, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

298

TURING: an Accurate and Interpretable Multi-Hypothesis Cross-Domain
Natural Language Database Interface

Peng Xu∗, Wenjie Zi∗, Hamidreza Shahidi, Ákos Kádár, Keyi Tang,
Wei Yang, Jawad Ateeq, Harsh Barot, Meidan Alon, Yanshuai Cao

Borealis AI
{peng.z.xu, wenjie.zi, hamidreza.shahidi, akos.kadar, keyi.tang}@borealisai.com

{wei.yang, jawad.ateeq, harsh.barot, meidan.alon, yanshuai.cao}@borealisai.com

Abstract

A natural language database interface (NLDB)
can democratize data-driven insights for non-
technical users. However, existing Text-to-
SQL semantic parsers cannot achieve high
enough accuracy in the cross-database setting
to allow good usability in practice. This work
presents TURING1, a NLDB system toward
bridging this gap. The cross-domain seman-
tic parser of TURING with our novel value pre-
diction method achieves 75.1% execution ac-
curacy, and 78.3% top-5 beam execution ac-
curacy on the Spider validation set (Yu et al.,
2018b). To benefit from the higher beam ac-
curacy, we design an interactive system where
the SQL hypotheses in the beam are explained
step-by-step in natural language, with their dif-
ferences highlighted. The user can then com-
pare and judge the hypotheses to select which
one reflects their intention if any. The En-
glish explanations of SQL queries in TUR-
ING are produced by our high-precision natu-
ral language generation system based on syn-
chronous grammars.

1 Introduction

Today a vast amount of knowledge is hidden in
structured datasets, not directly accessible to non-
technical users who are not familiar with the cor-
responding database query language like SQL or
SPARQL. Natural language database interfaces
(NLDB) enable everyday users to interact with
databases (Zelle and Mooney, 1996; Popescu et al.,
2003; Li and Jagadish, 2014; Zeng et al., 2020).
However, correctly translating natural language to
executable queries is challenging, as it requires
resolving all the ambiguities and subtleties of nat-
ural utterances for precise mapping. Furthermore,

∗Equal contribution
1System demo at https://turing.borealisai.

com/; video at https://vimeo.com/537429187/
9a5d41f446

quick deployment and adoption for NLDB require
zero-shot transfer to new databases without an in-
domain text-to-SQL parallel corpus, i.e. cross-
database semantic parsing (SP), making the trans-
lation accuracy even lower. Finally, unlike in other
NLP applications where partially correct results
can still provide partial utility, a SQL query with a
slight mistake could cause negative utility if trusted
blindly or confusing to users.

The recent Spider benchmark (Yu et al., 2018a)
captures this cross-domain problem, and the state-
of-the-art methods merely achieve around 70% ex-
ecution accuracy at the time of this submission 2.
Meanwhile, generalization to datasets collected un-
der different protocols is even weaker (Suhr et al.,
2020). Finally, users generally have no way to
know if the NLDB made a mistake except in very
obvious cases. The high error rate combined with
the overall system’s opacity makes it hard for users
to trust any output from the NLDB.

Our key observation is that our model’s top-5
accuracy on Spider is 78.3%, significantly higher
than the previous best single-model method at
around 68%, and our own top-1 accuracy. Top-
5 accuracy is the proportion of times when one of
the top five hypotheses from beam-search inference
is correct (in execution accuracy evaluation). For
top-5 accuracy to be relevant in practice, a non-
technical user needs to be able to pick the correct
hypothesis from the candidate list. To this end, we
design a feedback system that can unambiguously
explain the top beam-search results while present-
ing the differences intuitively and visually. Users
can then judge which, if any, of the parses cor-
rectly reflects their intentions. The explanation sys-
tem uses a hybrid of two synchronous context-free
grammars, one shallow and one deep. Together,
they achieve good readability for the most frequent

2https://yale-lily.github.io/spider

https://turing.borealisai.com/
https://turing.borealisai.com/
https://vimeo.com/537429187/9a5d41f446
https://vimeo.com/537429187/9a5d41f446
https://yale-lily.github.io/spider

299

query patterns while near-complete coverage over-
all.

Our system, TURING, is not only interpretable,
but also a highly accurate cross-domain NLDB.
Our semantic parser is based on the one in Xu et al.
(2020), which does not handle value prediction
like many other previous state-of-the-art models
on Spider. Compared to previous executable se-
mantic parsers, we achieve significant gains with a
number of techniques, but predominantly by dras-
tically simplifying the learning problem in value
prediction. The model only needs to identify the
text span providing evidence for the ground-truth
value. The noisy long tail text normalization step
required for producing the actual value is offloaded
to a deterministic search phase in post-processing.

In summary, this work presents two steps to-
wards a more robust NLDB:

1. A state-of-the-art text-to-SQL parsing system
with the best top-1 execution accuracy on the
Spider development set.

2. A way to relax usability requirement from top-
1 accuracy to top-k accuracy by explaining the
different hypotheses in natural language with
visual aids.

2 System Overview

As shown in Figure 1, TURING’s interface has
two main components: the database browser show-
ing schema and selected database content, and
the search panel where the users interact with the
parser. Figure 1 caption describes the typical user
interaction using an example.

Behind the front-end interface, TURING con-
sists of an executable cross-domain semantic parser
trained on Spider that maps user utterances to SQL
query hypotheses, the SQL execution engine that
runs the queries to obtain answers, and the explana-
tion generation module that produces the explana-
tion text and the meta-data powering explanation
highlighting. The next sections will describe the
semantic parsing and explanation modules.

3 Semantic Parser

The backbone of TURING is a neural semantic
parser which generates an executable SQL query T
given a user question Q and the database schema
S . We follow the state-of-the-art system (Xu et al.,
2020), but extend it to generate executable SQL
query instead of ignoring values in the SQL query,

like many other top systems (Wang et al., 2019;
Guo et al., 2019) on the Spider leaderboard.

On the high-level, our SP adopts the grammar-
based framework following TranX (Yin and Neu-
big, 2018) with an encoder-decoder neural archi-
tecture. A grammar-based transition system is
designed to turn the generation process of the
SQL abstract syntax tree (AST) into a sequence
of tree-constructing actions to be predicted by the
parser. The encoder fenc jointly encodes both
the user question Q = q1 . . . q|Q| and database
schema S = {s1, . . . , s|S|} consisting of tables
and columns in the database. The decoder fdec is
a transition-based abstract syntax decoder, which
uses the encoded representation H to predict the
target SQL query T . The decoder also relies on the
transition system to convert the AST constructed
by the predicted action sequences to the executable
surface SQL query.

To alleviate unnecessary burden on the decoder,
we introduce two novel modifications to the tran-
sition system to handle the schema and value de-
coding. With simple, but effective value-handling,
inference and regularization techniques applied on
this transition system, we are able to push the exe-
cution accuracy much higher for better usability.

3.1 Transition System

Our transition system has four types of action
to generate the AST, including (1) ApplyRule[r]
which applies a production rule r to the latest
generated node in the AST; (2) Reduce which
completes the generation of the current node; (3)
SelectColumn[c] which chooses a column c from
the database schema S; (4) CopyToken[i] which
copies a token qi from the user question Q.

There are two key distinctions of our transition
system with the previous systems. First, our tran-
sition system omits the action type SelectTable
used by other transition-based SP systems (Wang
et al., 2019; Guo et al., 2019). This is made pos-
sible by attaching the corresponding table to each
column, so that the tables in the target SQL query
can be deterministically inferred from the predicted
columns. Second, we simplify the value prediction
by always trying to copy from the user question,
instead of applying the GenToken[v] action (Yin
and Neubig, 2018) which generates tokens from a
large vocabulary or choose from a pre-processed
picklist (Lin et al., 2020). Both of the changes con-
strain the output space of the decoder to ease the

300

Figure 1: TURING system in action: the user selected database “Dog kennels”; the left and top panels show the
database schema and table content. The user then entered “What is the average age of the dogs who have gone
through any treatments?” in the search box. This question is run through the semantic parser producing multiple
SQL hypotheses from beam-search, which are then explained step-by-step as shown. The differences across the
hypotheses are highlighted. The tokens corresponding to table and columns are in bold. If there were more valid
hypotheses, a “Show more” button would appear to reveal the additional ones.

learning process, but the latter change unrealisti-
cally assumes that the values are always explicitly
mentioned in the question. To retain the genera-
tion flexibility without putting excessive burden on
the decoder, we propose a conceptually simple but
effective strategy to handle the values next.

3.2 Handling Values

Value prediction is a challenging, but crucial com-
ponent of NLDBs, however, only limited efforts
are committed to handling values properly in the
current cross-domain SP literature. Value mentions

are usually noisy, if mentioned explicitly at all, re-
quiring commonsense or domain knowledge to be
inferred. On the other hand, the number of possible
values in a database can be huge, leading to sparse
learning signals if the model tries to choose from
the possible value candidates.

Instead of attempting to predict the actual values
directly, our SP simply learns to identify the input
text spans providing evidence for the values. As
mentioned earlier, we introduce the CopyToken
action to copy an input span from the user question,
indicating the clues for this value. The ground-truth

301

CopyToken[i] actions are obtained from a tagging
strategy based on heuristics and fuzzy string match-
ing between the user question and the gold values.
As a result, the decoder is able to focus on un-
derstanding the question without considering other
complexities of the actual values which are difficult
to learn. If the values are only implicitly mentioned
in the user question, nothing is copied from the user
question. We leave the identification of the actual
values to a deterministic search-based inference in
post-processing, after the decoding process. This
yields a simpler learning task as the neural network
does not need to perform domain-specific text nor-
malization such as mapping “female” to “F” for
some databases.

Given the schema, the predicted SQL AST and
the database content, the post-processing first iden-
tifies the corresponding column type (number, text,
time), operation type (like, between, >, <, =, ...),
and aggregation type (count, max, sum, ...). Based
on these types, it infers the type and normalization
required for the value. If needed, it then performs
fuzzy-search in the corresponding column’s val-
ues in the database. When nothing is copied, a
default value is chosen based on some heuristics
(e.g., when there exist only two element “Yes” and
“No” in the column, the default value is “Yes”);
otherwise, the most frequent element in the column
is chosen. Searching the database content can also
be restricted to a picklist for privacy reasons like
previous works (Zeng et al., 2020; Lin et al., 2020).

Another benefit of this simple value handling
strategy is the ease to explain. The details are pre-
sented in the Sec. 4.

3.3 Encoder-Decoder

Our encoder architecture follows Xu et al. (2020).
The encoder, fenc, maps the user question Q and
the schema S to a joint representation H =
{φq1, . . . , φ

q
|Q|} ∪ {φ

s
1, . . . , φ

s
|S|}. It contextualizes

the question and schema jointly through both the
RoBERTA-Large model similar to (Guo et al.,
2019), as well as through the additional sequence of
24 relation-aware transformer (RAT) (Wang et al.,
2019) layers. As mentioned in Section 3.1, tables
are not predicted directly but inferred from the
columns, so we augment the column representa-
tions by adding the corresponding table representa-
tions after the encoding process.

We use a LSTM decoder fdec to gener-
ate the action sequence A. Formally, the

generation process can be formulated as
Pr(A|H) =

∏
t Pr(at|a<t,H) where H is

the encoded representations outputted by the
encoder fenc. The LSTM state is updated
following Wang et al. (2019): mmmt,hhht =
fLSTM([aaat−1‖zzzt−1‖hhhpt‖aaapt‖nnnpt],mmmt−1,hhht−1),
wheremmmt is the LSTM cell state, hhht is the LSTM
output at step t, aaat−1 is the action embedding of
the previous step, zzzt−1 is the context representation
computed using multi-head cross-attention of
hhht−1 over H, pt is the step corresponding to the
parent AST node of the current node, and nnn is
the node type embedding. For ApplyRule[r],
we compute Pr(at = ApplyRule[r]|a<t,H) =
softmaxr(g(zzzt)) where g(·) is a 2-layer MLP. For
SelectColumn[c], we use the memory augmented
pointer network following Guo et al. (2019). For
CopyToken[i], a pointer network is employed
to copy tokens from the user question Q with a
special token indicating the termination of copy.

3.4 Column Label Smoothing

One of the core challenges for cross-domain SP
is to generalize to unseen domains without over-
fitting to some specific domains during training.
Empirically, we observe that applying uniform la-
bel smoothing (Szegedy et al., 2016) on the ob-
jective term for predicting SelectColumn[c] can
effectively address the overfitting problem in the
cross-domain setting. Formally, the cross-entropy
for a ground-truth column c∗ we optimize becomes
(1 − ε) ∗ log p(c∗) + ε

K ∗
∑

c log p(c), where K
is the number of columns in the schema, ε is the
weight of the label smoothing term, and p(·) ,
Pr(at = SelectColumn[·]|a<t,H).

3.5 Weighted Beam Search

During inference, we use beam search to find the
high-probability action sequences. As mentioned
above, column prediction is prone to overfitting in
the cross-domain setting. In addition, value predic-
tion is dependent on the column prediction, that is,
if a column is predicted incorrectly, the associated
value has no chance to be predicted correctly. As a
result, we introduce two hyperparameters control-
ling influence based on the action types in the beam,
with a larger weight α > 1 for SelectColumn and
a smaller weight 0 < β < 1 for CopyToken.

302

4 Explanation Generation

The goal of the explanation generation system is to
unambiguously describe what the semantic parser
understands as the user’s command and allow the
user to easily interpret the differences across the
multiple hypotheses. Therefore, unlike a typical
dialogue system setting where language genera-
tion diversity is essential, controllability and con-
sistency are of primary importance. The generation
not only needs to be 100% factually correct, but the
differences in explanation also need to reflect the
differences in the predicted SQLs, no more and no
less. Therefore, we use a deterministic rule-based
generation system instead of a neural model.

Our explanation generator is a hybrid of two syn-
chronous context-free grammar (SCFG) systems
combined with additional heuristic post-processing
steps. The two grammars trade off readability and
coverage. One SCFG is shallow and simple, cov-
ering the most frequent SQL queries; the other is
deep and more compositional, covering the tail of
query distribution that our SP can produce for com-
pleteness. The SCFG can produce SQL and En-
glish explanation parallel. Given a SQL query, we
parse it under the grammar to obtain a derivation,
which we then follow to obtain the explanation text.
At inference time, for a given question, if any of
the SQL hypotheses cannot be parsed using the
shallow SCFG, then we move onto the deep one.

4.1 Details of the Grammars

Using the deep SQL syntax trees allows almost
complete coverage on the Spider domains. How-
ever, these explanations can be unnecessarily ver-
bose as the generation process faithfully follows the
re-ordered AST without 1.) compressing repeated
mentions of schema elements when possible 2.)
summarizing tedious details of the SQL query into
higher level logical concepts. Even though these
explanations are technically correct, practical ex-
planation should allow users to spot the difference
between queries easily. To this end, we design the
shallow grammar similarly to the template-based
explanation system in Elgohary et al. (2020), which
simplifies the SQL parse trees by collapsing large
subtrees into a single tree fragment. In the resulting
shallow parses production rules yield non-terminal
nodes corresponding to 1.) anonymized SQL tem-
plates 2.) UNION, INTERSECT, or EXCEPT op-
erations of two templates 3.) or a template pattern
followed by ORDER-BY-LIMIT clause. Our shal-

low but wide grammar has 64 rules with those non-
terminal nodes. The pre-terminal nodes are place-
holders in the anonymized SQL queries such as
Table name, Column name, Aggregation operator
and so on. Finally, the terminal nodes are the values
filling in the place holders. The advantage of this
grammar is that each high-level SQL template can
be associated with an English explanation template
that reveals the high level logic and abstracts away
from the details in the concrete queries. To fur-
ther reduce the redundancy, we make assumptions
to avoid unnecessarily repeating table and column
names. Table. 1 showcases some rules from the
shallow SCFG and one example of explanation. In
practice, around 75% of the examples in the Spider
validation set have all beam hypotheses from our
SP model parsable by the shallow grammar, with
the rest handled by the deep grammar. The deep
grammar has less than 50 rules. But because it is
more compositional, it covers 100% of the valid
SQLs that can be generated by our semantic parser.
Some sample explanation by the deep grammar can
be found in Table. 2.

Finally, whenever the final value in the query dif-
fers from original text span due to post-processing,
a sentence in the explanation states the change ex-
plicitly for clarity. For example, “‘Asian’ in the
question is matched to ‘Asia’ which appears in the
column Continent.”

5 Quantitative Evaluations

Implementation Details. We apply the DT-Fixup
technique from (Xu et al., 2020) to train our seman-
tic parser and mostly re-use their hyperparamters.
The weight of the column label smoothing term ε
is 0.2. Inference uses a beam size of 5 for the beam
search. We set the column weight as α = 3 and the
value weight as β = 0.1.
Dataset. We use Spider (Yu et al., 2018b), a
complex and cross-domain Text-to-SQL semantic
parsing benchmark, which has 10, 180 questions,
5, 693 queries covering 200 databases in 138 do-
mains. All our experiments are evaluated based on
the development set. We use the execution match
with values (Exec) evaluation metrics.
Results on Spider. We compare TURING with the
top systems on the Spider execution leaderboard
that have published reports with execution accu-
racy on the development set as well. As seen from
Table 3, our single model significantly outperforms
the previous state of the art in terms of Exec accu-

303

S -> P
S -> P UNION P
P -> (SELECT <T_0>.<C_0> FROM <T_1> GROUP BY <T_2>.<C_1> HAVING <AOps_0> (<T_3>.<C_2>) <WOps_0> <L_0>,

find the different values of the {<C_0>} in the {<T_1>} whose {<AOps_0>} the {<C_2>} {<WOps_0>} {<L_0>})

step 1: find the average of product price in the products table
step 2: find the different values of the product type code in the products table

whose average of the product price is greater than the results of step 1

Table 1: Sample shallow grammar production rules and one example explanation.

Step 1: find the entries in the employee table whose age is less than 30.0.
Step 2: among these results, for each city of the employee table,

where the number of records is more than 1, find city of the employee table.

"30" in the question is converted to 30.
"one" in the question is converted to 1.

Step 1: find combinations of entries in the employee table, the hiring table and the shop table
for which employee id of the employee table is equal to employee id of the hiring table
and shop id of the hiring table is equal to shop id of the shop table.

Step 2: among these results, for each shop id of the shop table,
find the average of age of the employee table and shop id of the shop table.

Table 2: Examples of explanation by the deep grammar. The first example also showcases the additional explana-
tion for value post-processing.

Model Exec
GAZP + BERT (Zhong et al., 2020) 59.2

Bridge v2 + BERT (Lin et al., 2020) 68.0

Bridge v2 + BERT (ensemble) 70.3

Turing + RoBERTa 75.1(best), 73.8± 0.7

Table 3: Exec accuracy on the Spider development set.

Model Exec
Turing + RoBERTa 73.8± 0.7

w/o. value post-processing 67.2± 0.8
w/o. column label smoothing 73.1± 1.2
w/o. weighted beam search 73.5± 0.7

top 3 in the beam 77.3± 0.4
top 5 in the beam 78.3± 0.3

Table 4: Ablation study on various techniques used in
TURING. We use 5 runs with different random seeds.

racy on the development set.
Ablation Study. Table 4 shows an ablation study
of various techniques in TURING. We can see that
removing the value post-processing decreases the
accuracy significantly, showing that copying alone
is not enough due to the mismatch in linguistic vari-
ation and the schema specific normalization. The
effectiveness of the proposed column label smooth-
ing and weighted beam search are also reflected by
the Exec accuracy on Spider. Furthermore, simply
adding more hypotheses in the beam can signifi-
cantly boost the coverage of the correct predictions,

leading to 4.5% accuracy gain over the top one
accuracy. By combining all these techniques to-
gether, TURING achieves an overall performance
gain above 10% over the previous best single model
system (68.0% of Bridge v2). 3

6 Related Work

Executable Cross-database Semantic Parsing.
Early NLDB systems use rule-based parsing (Zelle
and Mooney, 1996; Li and Jagadish, 2014) and
cannot handle the diversity of natural language in
practice. Neural semantic parsing is more promis-
ing for coverage but is still brittle in real-world
applications where queries can involve novel com-
positions of learned patterns (Finegan-Dollak et al.,
2018; Shaw et al., 2020). Furthermore, to allow
plug-and-play on new databases, the underlying
semantic parser may not be trained on in-domain
parallel corpus but needs to transfer across domains
in a zero-shot fashion.

Executable cross-database semantic parsing is
even more challenging. Many of the previous work
only tackle the cross-domain part, omitting the
value prediction problem required for executable
queries (Guo et al., 2019; Wang et al., 2019; Choi
et al., 2020; Xu et al., 2020). Unlike the output
space of predicting the SQL sketch or columns,

3Rubin and Berant (2020) updated a version (April 11th
2021) around the time of this submission with a dev accuracy
of 75% (missing from the first version), and a test accuracy of
71.1% significantly higher than the original 60.5%.

304

the value prediction output space is much less con-
strained. The correct value depends on the source
question, the SQL query, the type information of
the corresponding column, as well as the database
content. This complexity combined with limited
training data in standard benchmark datasets like
Spider makes the task very difficult. Some previ-
ous works directly learn to predict the values (Yin
and Neubig, 2018; Guo and Gao, 2020) on Wik-
iSQL (Zhong et al., 2017), but does not generalize
in cross-domain settings. On Spider, Zeng et al.
(2020) and Lin et al. (2020) build a candidate list
of values first and learn a pointer network to select
from the list. TURING instead learns a pointer net-
work to identify the input source span that provides
evidence for the value instead of directly the value
as previously described. Identification of the actual
value is offloaded to post-processing. From a sys-
tem perspective, it is also simpler for a power user
of the NLDB to upload a domain-specific term de-
scription/mapping which can extend the heuristic-
search-based value post-processing instantly rather
than relying on re-training.

Query Explanation. Explaining structured
query language has been studied in the past
(Simitsis and Ioannidis, 2009; Koutrika et al.,
2010; Ngomo et al., 2013; Xu et al., 2018). Full
NLDB systems can leverage explanations to
correct mistakes with user feedback (Elgohary
et al., 2020), or to prevent mistakes by giving
clarifications (Zeng et al., 2020). However, these
methods can only handle cases where the mistake
or ambiguity is about the table, column, or value
prediction. There is no easy way to resolve
structural mistakes or ambiguities if the query
sketch is wrong. TURING, on the other hand,
offers the potential to recover from such mistakes
if the correct query is among the top beam results.
This is an orthogonal contribution that could
be integrated with other user-interaction modes.
Finally, the NaLIR system (Li and Jagadish, 2014)
has a similar feature allowing the user to pick
from multiple interpretations of the input question.
However, NaLIR’s interpretation is based on
syntactical parses of the question rather than
interpreting the final semantic parses directly. A
rule-based semantic parser then maps the selected
syntactic parse to SQL. As the syntactic parse is
not guaranteed to be mapped to the correct SQL,
this interpretation does not completely close the
gap between what the NLDB performs and what

the user thinks it does.

7 Conclusion

We presented TURING, a natural language interface
to databases (NLDB) that is accurate, interpretable,
and works on a wide range of domains. Our sys-
tem explains its actions in natural language so that
the user can select the right answer from multiple
hypotheses, capitalizing on the much higher beam
accuracy instead of top-1 accuracy. TURING pro-
vides a complementary way to resolve mistakes
and ambiguities in NLDB.

Acknowledgments

We appreciate the ACL demo anonymous review-
ers for their valuable inputs. We would like to
thank Mehrsa Golestaneh and April Cooper for
their work on the improved front-end version,
https://turing-app.borealisai.com, which is
not in the scope of this publication. We also would
like to thank Wendy Tay and Simon J.D. Prince for
their general support.

References
DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,

and Dong Ryeol Shin. 2020. Ryansql: Recursively
applying sketch-based slot fillings for complex text-
to-sql in cross-domain databases.

Ahmed Elgohary, Saghar Hosseini, and Ahmed H.
Awadallah. 2020. Speak to your parser: Interac-
tive text-to-sql with natural language feedback. In
Annual Conference of the Association for Computa-
tional Linguistics (ACL 2020).

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. ACL.

Tong Guo and Huilin Gao. 2020. Content enhanced
bert-based text-to-sql generation.

G. Koutrika, A. Simitsis, and Y. E. Ioannidis. 2010. Ex-
plaining structured queries in natural language. In
2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010), pages 333–344.

https://turing-app.borealisai.com
http://arxiv.org/abs/2004.03125
http://arxiv.org/abs/2004.03125
http://arxiv.org/abs/2004.03125
https://www.microsoft.com/en-us/research/publication/speak-to-your-parser-interactive-text-to-sql-with-natural-language-feedback/
https://www.microsoft.com/en-us/research/publication/speak-to-your-parser-interactive-text-to-sql-with-natural-language-feedback/
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
http://arxiv.org/abs/1910.07179
http://arxiv.org/abs/1910.07179
https://doi.org/10.1109/ICDE.2010.5447824
https://doi.org/10.1109/ICDE.2010.5447824

305

F. Li and H. V. Jagadish. 2014. Nalir: an interactive
natural language interface for querying relational
databases. Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. arXiv preprint
arXiv:2012.12627.

Axel-Cyrille Ngonga Ngomo, Lorenz Bhmann,
Christina Unger, Jens Lehmann, and Daniel Gerber.
2013. Sorry, i don’t speak sparql: translating sparql
queries into natural language. In WWW, pages
977–988.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces,
pages 149–157.

Ohad Rubin and Jonathan Berant. 2020. Smbop: Semi-
autoregressive bottom-up semantic parsing.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2020. Compositional general-
ization and natural language variation: Can a seman-
tic parsing approach handle both? arXiv preprint
arXiv:2010.12725.

Alkis Simitsis and Yannis E. Ioannidis. 2009. Dbmss
should talk back too. CoRR, abs/0909.1786.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388, Online. Association for Computational Lin-
guistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2818–2826.

Bailin Wang, Richard Shin, Xiaodong Liu, Olek-
sandr Polozov, and Matthew Richardson. 2019.
Rat-sql: Relation-aware schema encoding and
linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
and Vadim Sheinin. 2018. SQL-to-text generation
with graph-to-sequence model. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 931–936, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

P. Xu, Wei Yang, W. Zi, Keyi Tang, Chengyang Huang,
J. Cheung, and Yanshuai Cao. 2020. Optimiz-
ing deeper transformers on small datasets: An ap-
plication on text-to-sql semantic parsing. ArXiv,
abs/2012.15355.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. arXiv preprint
arXiv:1810.02720.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018a. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for
Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018b. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence, pages 1050–1055.

Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi,
Richard Socher, Caiming Xiong, Michael Lyu, and
Irwin King. 2020. Photon: A robust cross-domain
text-to-SQL system. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 204–
214, Online. Association for Computational Linguis-
tics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

https://doi.org/10.1145/2488388.2488473
https://doi.org/10.1145/2488388.2488473
http://arxiv.org/abs/2010.12412
http://arxiv.org/abs/2010.12412
http://arxiv.org/abs/0909.1786
http://arxiv.org/abs/0909.1786
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/D18-1112
https://doi.org/10.18653/v1/D18-1112
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2020.acl-demos.24
https://doi.org/10.18653/v1/2020.acl-demos.24
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

