@inproceedings{xu-etal-2021-turing,
title = "{TURING}: an Accurate and Interpretable Multi-Hypothesis Cross-Domain Natural Language Database Interface",
author = "Xu, Peng and
Zi, Wenjie and
Shahidi, Hamidreza and
K{\'a}d{\'a}r, {\'A}kos and
Tang, Keyi and
Yang, Wei and
Ateeq, Jawad and
Barot, Harsh and
Alon, Meidan and
Cao, Yanshuai",
editor = "Ji, Heng and
Park, Jong C. and
Xia, Rui",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-demo.36",
doi = "10.18653/v1/2021.acl-demo.36",
pages = "298--305",
abstract = "A natural language database interface (NLDB) can democratize data-driven insights for non-technical users. However, existing Text-to-SQL semantic parsers cannot achieve high enough accuracy in the cross-database setting to allow good usability in practice. This work presents TURING, a NLDB system toward bridging this gap. The cross-domain semantic parser of TURING with our novel value prediction method achieves 75.1{\%} execution accuracy, and 78.3{\%} top-5 beam execution accuracy on the Spider validation set (Yu et al., 2018b). To benefit from the higher beam accuracy, we design an interactive system where the SQL hypotheses in the beam are explained step-by-step in natural language, with their differences highlighted. The user can then compare and judge the hypotheses to select which one reflects their intention if any. The English explanations of SQL queries in TURING are produced by our high-precision natural language generation system based on synchronous grammars.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2021-turing">
<titleInfo>
<title>TURING: an Accurate and Interpretable Multi-Hypothesis Cross-Domain Natural Language Database Interface</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peng</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Zi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamidreza</namePart>
<namePart type="family">Shahidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ákos</namePart>
<namePart type="family">Kádár</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keyi</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jawad</namePart>
<namePart type="family">Ateeq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harsh</namePart>
<namePart type="family">Barot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meidan</namePart>
<namePart type="family">Alon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanshuai</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jong</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A natural language database interface (NLDB) can democratize data-driven insights for non-technical users. However, existing Text-to-SQL semantic parsers cannot achieve high enough accuracy in the cross-database setting to allow good usability in practice. This work presents TURING, a NLDB system toward bridging this gap. The cross-domain semantic parser of TURING with our novel value prediction method achieves 75.1% execution accuracy, and 78.3% top-5 beam execution accuracy on the Spider validation set (Yu et al., 2018b). To benefit from the higher beam accuracy, we design an interactive system where the SQL hypotheses in the beam are explained step-by-step in natural language, with their differences highlighted. The user can then compare and judge the hypotheses to select which one reflects their intention if any. The English explanations of SQL queries in TURING are produced by our high-precision natural language generation system based on synchronous grammars.</abstract>
<identifier type="citekey">xu-etal-2021-turing</identifier>
<identifier type="doi">10.18653/v1/2021.acl-demo.36</identifier>
<location>
<url>https://aclanthology.org/2021.acl-demo.36</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>298</start>
<end>305</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TURING: an Accurate and Interpretable Multi-Hypothesis Cross-Domain Natural Language Database Interface
%A Xu, Peng
%A Zi, Wenjie
%A Shahidi, Hamidreza
%A Kádár, Ákos
%A Tang, Keyi
%A Yang, Wei
%A Ateeq, Jawad
%A Barot, Harsh
%A Alon, Meidan
%A Cao, Yanshuai
%Y Ji, Heng
%Y Park, Jong C.
%Y Xia, Rui
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F xu-etal-2021-turing
%X A natural language database interface (NLDB) can democratize data-driven insights for non-technical users. However, existing Text-to-SQL semantic parsers cannot achieve high enough accuracy in the cross-database setting to allow good usability in practice. This work presents TURING, a NLDB system toward bridging this gap. The cross-domain semantic parser of TURING with our novel value prediction method achieves 75.1% execution accuracy, and 78.3% top-5 beam execution accuracy on the Spider validation set (Yu et al., 2018b). To benefit from the higher beam accuracy, we design an interactive system where the SQL hypotheses in the beam are explained step-by-step in natural language, with their differences highlighted. The user can then compare and judge the hypotheses to select which one reflects their intention if any. The English explanations of SQL queries in TURING are produced by our high-precision natural language generation system based on synchronous grammars.
%R 10.18653/v1/2021.acl-demo.36
%U https://aclanthology.org/2021.acl-demo.36
%U https://doi.org/10.18653/v1/2021.acl-demo.36
%P 298-305
Markdown (Informal)
[TURING: an Accurate and Interpretable Multi-Hypothesis Cross-Domain Natural Language Database Interface](https://aclanthology.org/2021.acl-demo.36) (Xu et al., ACL-IJCNLP 2021)
ACL
- Peng Xu, Wenjie Zi, Hamidreza Shahidi, Ákos Kádár, Keyi Tang, Wei Yang, Jawad Ateeq, Harsh Barot, Meidan Alon, and Yanshuai Cao. 2021. TURING: an Accurate and Interpretable Multi-Hypothesis Cross-Domain Natural Language Database Interface. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations, pages 298–305, Online. Association for Computational Linguistics.