@inproceedings{zmigrod-etal-2021-finding,
title = "On Finding the K-best Non-projective Dependency Trees",
author = "Zmigrod, Ran and
Vieira, Tim and
Cotterell, Ryan",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.106",
doi = "10.18653/v1/2021.acl-long.106",
pages = "1324--1337",
abstract = "The connection between the maximum spanning tree in a directed graph and the best dependency tree of a sentence has been exploited by the NLP community. However, for many dependency parsing schemes, an important detail of this approach is that the spanning tree must have exactly one edge emanating from the root. While work has been done to efficiently solve this problem for finding the one-best dependency tree, no research has attempted to extend this solution to finding the K-best dependency trees. This is arguably a more important extension as a larger proportion of decoded trees will not be subject to the root constraint of dependency trees. Indeed, we show that the rate of root constraint violations increases by an average of 13 times when decoding with K=50 as opposed to K=1. In this paper, we provide a simplification of the K-best spanning tree algorithm of Camerini et al. (1980). Our simplification allows us to obtain a constant time speed-up over the original algorithm. Furthermore, we present a novel extension of the algorithm for decoding the K-best dependency trees of a graph which are subject to a root constraint.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zmigrod-etal-2021-finding">
<titleInfo>
<title>On Finding the K-best Non-projective Dependency Trees</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ran</namePart>
<namePart type="family">Zmigrod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Vieira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The connection between the maximum spanning tree in a directed graph and the best dependency tree of a sentence has been exploited by the NLP community. However, for many dependency parsing schemes, an important detail of this approach is that the spanning tree must have exactly one edge emanating from the root. While work has been done to efficiently solve this problem for finding the one-best dependency tree, no research has attempted to extend this solution to finding the K-best dependency trees. This is arguably a more important extension as a larger proportion of decoded trees will not be subject to the root constraint of dependency trees. Indeed, we show that the rate of root constraint violations increases by an average of 13 times when decoding with K=50 as opposed to K=1. In this paper, we provide a simplification of the K-best spanning tree algorithm of Camerini et al. (1980). Our simplification allows us to obtain a constant time speed-up over the original algorithm. Furthermore, we present a novel extension of the algorithm for decoding the K-best dependency trees of a graph which are subject to a root constraint.</abstract>
<identifier type="citekey">zmigrod-etal-2021-finding</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.106</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.106</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1324</start>
<end>1337</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On Finding the K-best Non-projective Dependency Trees
%A Zmigrod, Ran
%A Vieira, Tim
%A Cotterell, Ryan
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F zmigrod-etal-2021-finding
%X The connection between the maximum spanning tree in a directed graph and the best dependency tree of a sentence has been exploited by the NLP community. However, for many dependency parsing schemes, an important detail of this approach is that the spanning tree must have exactly one edge emanating from the root. While work has been done to efficiently solve this problem for finding the one-best dependency tree, no research has attempted to extend this solution to finding the K-best dependency trees. This is arguably a more important extension as a larger proportion of decoded trees will not be subject to the root constraint of dependency trees. Indeed, we show that the rate of root constraint violations increases by an average of 13 times when decoding with K=50 as opposed to K=1. In this paper, we provide a simplification of the K-best spanning tree algorithm of Camerini et al. (1980). Our simplification allows us to obtain a constant time speed-up over the original algorithm. Furthermore, we present a novel extension of the algorithm for decoding the K-best dependency trees of a graph which are subject to a root constraint.
%R 10.18653/v1/2021.acl-long.106
%U https://aclanthology.org/2021.acl-long.106
%U https://doi.org/10.18653/v1/2021.acl-long.106
%P 1324-1337
Markdown (Informal)
[On Finding the K-best Non-projective Dependency Trees](https://aclanthology.org/2021.acl-long.106) (Zmigrod et al., ACL-IJCNLP 2021)
ACL
- Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2021. On Finding the K-best Non-projective Dependency Trees. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1324–1337, Online. Association for Computational Linguistics.