@inproceedings{ahmad-etal-2021-select,
title = "Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention",
author = "Ahmad, Wasi and
Bai, Xiao and
Lee, Soomin and
Chang, Kai-Wei",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.111",
doi = "10.18653/v1/2021.acl-long.111",
pages = "1389--1404",
abstract = "Natural language processing techniques have demonstrated promising results in keyphrase generation. However, one of the major challenges in \textit{neural} keyphrase generation is processing long documents using deep neural networks. Generally, documents are truncated before given as inputs to neural networks. Consequently, the models may miss essential points conveyed in the target document. To overcome this limitation, we propose \textit{SEG-Net}, a neural keyphrase generation model that is composed of two major components, (1) a selector that selects the salient sentences in a document and (2) an extractor-generator that jointly extracts and generates keyphrases from the selected sentences. SEG-Net uses Transformer, a self-attentive architecture, as the basic building block with a novel \textit{layer-wise} coverage attention to summarize most of the points discussed in the document. The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ahmad-etal-2021-select">
<titleInfo>
<title>Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wasi</namePart>
<namePart type="family">Ahmad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soomin</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language processing techniques have demonstrated promising results in keyphrase generation. However, one of the major challenges in neural keyphrase generation is processing long documents using deep neural networks. Generally, documents are truncated before given as inputs to neural networks. Consequently, the models may miss essential points conveyed in the target document. To overcome this limitation, we propose SEG-Net, a neural keyphrase generation model that is composed of two major components, (1) a selector that selects the salient sentences in a document and (2) an extractor-generator that jointly extracts and generates keyphrases from the selected sentences. SEG-Net uses Transformer, a self-attentive architecture, as the basic building block with a novel layer-wise coverage attention to summarize most of the points discussed in the document. The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin.</abstract>
<identifier type="citekey">ahmad-etal-2021-select</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.111</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.111</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1389</start>
<end>1404</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention
%A Ahmad, Wasi
%A Bai, Xiao
%A Lee, Soomin
%A Chang, Kai-Wei
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F ahmad-etal-2021-select
%X Natural language processing techniques have demonstrated promising results in keyphrase generation. However, one of the major challenges in neural keyphrase generation is processing long documents using deep neural networks. Generally, documents are truncated before given as inputs to neural networks. Consequently, the models may miss essential points conveyed in the target document. To overcome this limitation, we propose SEG-Net, a neural keyphrase generation model that is composed of two major components, (1) a selector that selects the salient sentences in a document and (2) an extractor-generator that jointly extracts and generates keyphrases from the selected sentences. SEG-Net uses Transformer, a self-attentive architecture, as the basic building block with a novel layer-wise coverage attention to summarize most of the points discussed in the document. The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin.
%R 10.18653/v1/2021.acl-long.111
%U https://aclanthology.org/2021.acl-long.111
%U https://doi.org/10.18653/v1/2021.acl-long.111
%P 1389-1404
Markdown (Informal)
[Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention](https://aclanthology.org/2021.acl-long.111) (Ahmad et al., ACL-IJCNLP 2021)
ACL