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Abstract

Users of medical question answering systems
often submit long and detailed questions, mak-
ing it hard to achieve high recall in answer re-
trieval. To alleviate this problem, we propose
a novel Multi-Task Learning (MTL) method
with data augmentation for medical question
understanding. We first establish an equiva-
lence between the tasks of question summa-
rization and Recognizing Question Entailment
(RQE) using their definitions in the medical
domain. Based on this equivalence, we pro-
pose a data augmentation algorithm to use just
one dataset to optimize for both tasks, with
a weighted MTL loss. We introduce gradu-
ally soft parameter-sharing: a constraint for
decoder parameters to be close, that is gradu-
ally loosened as we move to the highest layer.
We show through ablation studies that our pro-
posed novelties improve performance. Our
method outperforms existing MTL methods
across 4 datasets of medical question pairs,
in ROUGE scores, RQE accuracy and human
evaluation. Finally, we show that our method
fares better than single-task learning under 4
low-resource settings.

1 Introduction

In order to retrieve relevant answers, one of the
basic steps in Question Answering (QA) systems is
understanding the intent of questions (Chen et al.,
2012; Cai et al., 2017). This is particularly impor-
tant for medical QA systems (Wu et al., 2020), as
consumer health questions – questions asked by pa-
tients – may use a vocabulary distinct from doctors
to describe similar health concepts (Ben Abacha
and Demner-Fushman, 2019a). Consumer health
questions may also contain peripheral information
like patient history (Roberts and Demner-Fushman,
2016), that are not necessary to answer questions.
There is a growing number of approaches to medi-
cal question understanding, including query relax-

Source User-written Question or Consumer Health Question (CHQ):
SUBJECT: Morgellon Disease. MESSAGE: It appears as if I have had this 
horrible disease for many, many years and it is getting worst.  I am trying 
to find a physician or specialist in the South Carolina area who can treat 
me for this medical/mental disease.  It seems as if this disease has "NO" 
complete treatment and it is more least a disability!

Reference Summarized Question or Frequently Asked Question (FAQ):
What are the treatments for Morgellon Disease, and how can I find 
physician(s) in South Carolina who specialize in it?

BART Trained on Summarization Loss Only (Baseline):
Where can I find physician(s) who specialize in morgellon disease?

Our Gradually Soft Multi-Task and Data-Augmented Model:
Where can I find a physician or specialist in South Carolina who can treat 
Morgellon Disease?

Figure 1: We highlight the main four aspects of the
CHQ. Our method learns from the task of Recogniz-
ing Question Entailment to generate more informative
summaries compared to the baseline.

ation (Ben Abacha and Zweigenbaum, 2015; Lei
et al., 2020), question entailment (Ben Abacha and
Demner-Fushman, 2016, 2019b; Agrawal et al.,
2019), question summarization (Ben Abacha and
Demner-Fushman, 2019a), and question similarity
(Ben Abacha and Demner-Fushman, 2017; Yan and
Li, 2018; McCreery et al., 2019).

Medical question summarization is the task of
summarizing consumer health questions into short,
single-sentence questions that capture essential in-
formation needed to give a correct answer. The
task of Recognizing Question Entailment (RQE)
is defined by Ben Abacha and Demner-Fushman
(2016) in the medical domain as a binary classi-
fication task. For the purpose of this task, a first
question is considered to entail a second one if and
only if every answer to the second question is a
correct, and either full or partial answer to the first
question.

We find in initial experiments (Mrini et al.,
2021b) that RQE can teach question summarizers
to distinguish salient information from peripheral
details, and likewise that question summarization
can benefit RQE classifiers. In our setting, we cast
the medical question understanding task as a Multi-
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Task Learning (MTL) problem involving the two
tasks of question summarization and Recognizing
Question Entailment. We use a simple sum of learn-
ing objectives in Mrini et al. (2021b). In this paper,
we introduce a novel, gradually soft multi-task and
data-augmented approach to medical question un-
derstanding.1

Previous work on combining summarization and
entailment uses at least 2 datasets – 1 from each
task (Pasunuru et al., 2017; Guo et al., 2018). We
first establish an equivalence between both tasks.
This equivalence is the inspiration behind the data
augmentation schemes introduced in our previous
work (Mrini et al., 2021b). The goal of the data
augmentation is to use a single dataset for Multi-
Task Learning. We propose to use a weighted
loss function to simultaneously optimize for both
tasks. Then, we propose a gradually soft parameter-
sharing MTL approach. We conduct ablation stud-
ies to show that our two novelties – data augmen-
tation and gradually soft parameter-sharing – im-
prove performance in both tasks.

Our proposed gradually soft multi-task and data-
augmented approach outperforms existing single-
task and multi-task learning methods on architec-
tures achieving state-of-the-art results in abstractive
summarization. Compared to single-task learning,
our approach achieves a 12% increase in accuracy
on a medical RQE dataset, and an average increase
of 3.5% in ROUGE-1 F1 scores across 3 medical
question summarization datasets. Additionally, we
perform human evaluation and find our approach
generates more informative summarized questions.
Finally, we find that our approach is more efficient
at leveraging smaller amounts of data, and yields
better performance under 4 low-resource settings.

2 Background and Related Work

Recognizing Question Entailment (RQE).
Ben Abacha and Demner-Fushman (2016) intro-
duce the task of RQE. It is closely related –– but
not exactly similar –– to the task of Recognizing
Textual Entailment (RTE) (Dagan et al., 2005,
2013), and early definitions of question entailment
(Groenendijk and Stokhof, 1984; Roberts, 1996).

The task of RQE is to predict, given two pairs
of questions A and B, whether A entails B. RQE
considers that question A entails question B if every

1Our code is available at:
https://github.com/KhalilMrini/
Medical-Question-Understanding

answer to B is a correct answer to A, and answers
A either partially or fully. It differs from traditional
definitions of entailment, where we consider that
the premise entails the hypothesis if and only if the
hypothesis is true only if the premise is true.

Ben Abacha and Demner-Fushman (2016) define
RQE within the context of Medical Question An-
swering. The goal is to match a Consumer Health
Question (CHQ) to a Frequently Asked Question
(FAQ), and ultimately match the CHQ to an expert-
written answer.
Summarization and Entailment. There is a
growing body of work combining summarization
and entailment (Lloret et al., 2008; Mehdad et al.,
2013; Gupta et al., 2014).

Falke et al. (2019) use textual entailment pre-
dictions to detect factual errors in abstractive sum-
maries generated by state-of-the-art models. Pa-
sunuru and Bansal (2018) propose an entailment
reward for their reinforced abstractive summarizer,
where the entailment score is obtained from a
pre-trained and frozen natural language inference
model.

Pasunuru et al. (2017) propose an LSTM
encoder-decoder model that incorporates entail-
ment generation and abstractive summarization.
The authors optimize alternatively between the two
tasks, and use separate Natural Language Infer-
ence (NLI) and abstractive summarization datasets.
Only the decoder parameters are shared.

Li et al. (2018) closely follow the MTL setting
of Pasunuru et al. (2017), and propose a model
with a shared encoder, an NLI classifier and an
NLI-rewarded summarization decoder.

Guo et al. (2018) introduce a pointer-generator
summarization model with coverage loss (See et al.,
2017). They build upon the work of Pasunuru et al.
(2017), and add question generation on top of the
two tasks of abstractive summarization and entail-
ment generation. They also alternate between the
three different objectives. The authors propose
to share all parameters except the first layer of
the encoder and the last layer of the decoder, and
show that soft parameter-sharing improves over
hard parameter-sharing. Their method outperforms
the pointer-generator networks of See et al. (2017)
on the CNN-Dailymail news summarization base-
line. Here, the authors show performance increase
in entailment on some batch sizes and decrease on
other batch sizes, and they consider entailment as
an auxiliary task.

https://github.com/KhalilMrini/Medical-Question-Understanding
https://github.com/KhalilMrini/Medical-Question-Understanding
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Transfer Learning for Medical QA. BioNLP is
one of many NLP applications to benefit from lan-
guage models that use multi-task learning and trans-
fer learning. There are pretrained language models
that are geared towards BioNLP applications, that
are based on BERT (Devlin et al., 2019). Those
include SciBERT (Beltagy et al., 2019) which
has been fine-tuned using biomedical text from
PubMed. BioBERT (Lee et al., 2020) has been fine-
tuned on the PMC dataset, whereas models named
ClinicalBERT (Huang et al., 2019; Alsentzer et al.,
2019) additionally use the MIMIC III dataset (John-
son et al., 2016).

Transfer learning was a popular approach at the
2019 MEDIQA shared task (Ben Abacha et al.,
2019) on medical NLI, RQE and QA. The question
answering task involved re-ranking answers, not
generating them (Demner-Fushman et al., 2020).
For the RQE task, the best-performing model (Zhu
et al., 2019) uses transfer learning on NLI and en-
semble methods.

3 Methodology

We consider the multi-task learning of medical
question summarization and medical RQE. The
input to both tasks is a pair of medical questions.
The first question is called a Consumer Health
Question (CHQ), and the second question is called
a Frequently Asked Question (FAQ). The CHQ
is written by a patient and is usually longer and
more informal, whereas the FAQ is usually a single-
sentence question written by a medical expert. The
purpose of both tasks is to match a CHQ to an
FAQ, and ultimately to an expert-written answer
that matches the FAQ. An example pair is shown
in Figure 1.

Our novel gradually soft multi-task and data-
augmented learning approach to medical question
understanding has four main components. First, we
establish the equivalence between medical question
pairs in question summarization and RQE. Then,
we use our equivalence observation to propose a
scheme for data augmentation. Third, we show our
simultaneous multi-task learning model architec-
ture and learning objective. Finally, we describe
our gradually soft parameter-sharing scheme.

3.1 Equivalence of Question Summarization
and RQE

In the following, we evidence the equivalence be-
tween medical question summarization and medi-

cal RQE. We first consider a pair of medical ques-
tions C and F, where C is a CHQ and F and is an
FAQ, such that C is longer than F.

Ben Abacha and Demner-Fushman (2016) define
question entailment as: question C entails question
F (C ⇒ F ) if and only if every answer to F is
also a correct answer to C, whether partially or
completely (1).

According to the guidelines set in the data cre-
ation of a medical question summarization dataset
by Ben Abacha and Demner-Fushman (2019a),
doctors were told to grade manually written sum-
marized questions (FAQs) as perfect, acceptable or
incorrect. The two conditions for a perfect FAQ
are: first, an FAQ should enable to retrieve “com-
plete and correct answers” to the original CHQ,
and second, the summarized question should not
be so short that it violates the first condition. The
resulting medical question summarization dataset
includes perfect and acceptable FAQs. We assume
that a perfect FAQ provides complete and correct
answers to the corresponding CHQ, and that an ac-
ceptable FAQ provides correct answers to the cor-
responding CHQ, whether partially or completely.
We therefore conclude that: F is a good summary
of C, if and only if F enables to retrieve correct
answers to C, whether partially or completely (2).

We have: F enables to retrieve correct answers to
C, if and only if answers to F are correct answers to
C. Therefore, F enables to retrieve correct answers
to C, if and only if every answer to F is also a cor-
rect answer to C, whether partially or completely.
Given the equivalences (1) and (2) above, it follows
that: question F is a good summary of question C,
if and only if question C entails question F (3).

3.2 Data Augmentation

Medical question understanding datasets are scarce,
and new high-quality datasets are complex and
costly to create. We propose in Mrini et al. (2021b)
to augment existing datasets in one of the two tasks
to create a synthetic dataset of the same size for
the other task. Our two-way data augmentation
algorithm is inspired by the equivalence shown in
the previous subsection, and enables us to train in
a simultaneous multi-task setting. Our data aug-
mentation method also addresses a weakness in
previous work in multi-task learning, where each
task involves a distinct dataset, often from a differ-
ent domain. Our data augmentation will enable us
to use datasets in the same domain, and we hypoth-
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esize this can benefit performance in both tasks.
For summarization datasets, we create equiva-

lent RQE pairs. For each existing summarization
pair, we first choose with equal probability whether
the equivalent RQE pair is labeled as entailment or
not. If it is an entailment case, we use the equiva-
lence in (3) and create an RQE pair identical to the
summarization pair. If it is not an entailment case,
then we have: (3)⇔ question F is not a summary
of question C if and only if question C does not
entail question F (4). Therefore, to create an equiv-
alent RQE pair labeled as not entailement, the RQE
CHQ is identical to the CHQ of the summarization
pair, and the RQE FAQ is randomly selected from
a distinct question pair from the same dataset split.

Inversely, for the RQE dataset, we create equiva-
lent summarization pairs. For each existing RQE
pair, we consider two cases. If the RQE pair is
labeled as entailment, we create an identical sum-
marization pair. If the RQE pair is labeled as not
entailment, then following (4), we create a summa-
rization pair that is identical to a randomly selected
and distinct RQE pair labeled as entailment from
the same dataset split.

3.3 Simultaneous Multi-Task Learning

Previous work on multi-task learning with sum-
marization and entailment (Pasunuru et al., 2017;
Guo et al., 2018) optimize for the objectives of the
different tasks by alternating between them. This
alternating multi-task training follows a ratio be-
tween the different tasks, that depends on the size
of the dataset of each task (e.g. a ratio of 10:1
means training for 10 batches on one task, and then
for 1 batch on the other task). In our approach, we
propose to optimize simultaneously for the objec-
tives of both tasks. We do not use ratios, as we are
not alternating between objectives and the resulting
datasets from our data augmentation algorithm are
of equal size.

Whereas many previous multi-task settings
chose generation tasks (entailment generation and
question generation), we choose the BART Large
architecture (Lewis et al., 2019) as it enables to
optimize for a classification task (RQE) and a gen-
eration task (summarization) using the same ar-
chitecture. In addition, BART is adequate as it
achieves very strong results in benchmark datasets
of recognizing textual entailment and abstractive
summarization. The input works differently be-
tween both tasks. For summarization, the encoder

Shared 
Encoder

Decoder Decoder

FAQ CHQ; FAQ

CHQ; FAQCHQ

Recognizing Question 
Entailment (RQE)
Classification Task

Question 
Summarization
Generation Task

Classification 
Head

Cross-Entropy 
Loss

Negative 
Log-Likelihood 

Loss

Gradually Soft 
Parameter-Sharing 

Loss

Figure 2: Overview of the architecture of our proposed
gradually soft multi-task and data-augmented model.
The gradually thinning links between decoder layers
represent the loosening parameter-sharing constraint.

takes the CHQ as input and the decoder takes the
FAQ as input. For RQE, both the encoder and de-
coder take the entire RQE pair as input. We add a
classification head for RQE, to which we feed the
last decoder output, as it attends over all decoder
and encoder positions. We show an overview of
our architecture in Figure 2.

We propose to optimize a single loss function
that combines objectives of both tasks. Our loss
function is the weighted sum of the negative log-
likelihood summarization objective, and the binary
cross-entropy classification objective of RQE.

More formally, given a CHQ embedding x, the
corresponding FAQ embedding y, and the entail-
ment label lentail ∈ {0, 1}, we optimize the follow-
ing multi-task learning loss function:

LMTL(θ) =− λ ∗ logp(y|x; θ)
+ (1− λ) ∗ BCE ([x;y] , lentail; θ)

(1)

where BCE is binary cross entropy, and λ is a hy-
perparameter between 0 and 1.
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3.4 Gradually Soft Parameter-Sharing
In multi-task learning, there are two widely used
approaches: hard parameter-sharing and soft
parameter-sharing. Guo et al. (2018) propose soft
parameter-sharing for all parameters except the first
layer of the encoder and last layer of the decoder.
Liu et al. (2019) introduce MT-DNN and show that
hard parameter-sharing of all of the transformer
encoder layers, and only having task-specific clas-
sification heads produces results that set a new state
of the art for the GLUE benchmark (Wang et al.,
2018).

We propose a hybrid approach, where we apply
hard parameter-sharing for the encoder, and a novel
gradually soft parameter-sharing approach for the
decoder layers. We define gradually soft parameter-
sharing as a smooth transition from hard parameter-
sharing to task-specific layers. It is a soft parameter-
sharing approach that is gradually toned down from
the first layer of the decoder to the last layer, which
is entirely task-specific.

In gradually soft parameter-sharing, we con-
strain decoder parameters to be close by penalizing
their l2 distances, and the higher the layer the looser
the constraint. Given a decoder with N layers, the
gradually soft parameter-sharing loss term is as
follows:

LGS(θ) = γ ∗
N−1∑
n=1

(
e

N−n
N − 1

)∥∥∥θQS
dec,n − θ

RQE
dec,n

∥∥∥2
(2)

where γ is a hyperparameter, θQS
dec,n represents the

decoder parameters for the question summarization
at the n-th layer, and likewise θRQE

dec,n represents the
decoder parameters for the RQE task at the n-th
layer. We iterate from the 1st to the (N − 1)-th
layer, as the N -th layer is entirely task-specific and
unconstrained. We show a high-level representa-
tion in Figure 2.

4 Experiments

4.1 Datasets
We consider 3 medical question summarization
datasets and 1 medical RQE dataset. We show
dataset statistics in Table 1. MeQSum and
MEDIQA RQE can be considered low-resource,
whereas the other two are far larger. Our datasets
are in the English language. Due to space con-
straints, we briefly introduce the datasets and leave
additional details in the appendix.

DATASET TRAIN DEV TEST

MeQSum 400 100 500
HealthCareMagic 181,122 22,641 22,642
iCliniq 24,851 3,105 3,106
MEDIQA RQE 8,588 302 230

Table 1: Statistics of the medical dataset splits.

The medical question summarization datasets
are MeQSum (Ben Abacha and Demner-Fushman,
2019a), HealthCareMagic and iCliniq. We extract
in Mrini et al. (2021b) and in Mrini et al. (2021c)
the HealthCareMagic and iCliniq datasets from
the large-scale MedDialog dataset (Chen et al.,
2020). Whereas MeQSum is a high-quality dataset
from the U.S. National Institutes of Health (NIH),
HealthCareMagic and iCliniq are from online
healthcare service platforms. HealthCareMagic’s
summaries are more abstractive and are written
in a formal style, unlike iCliniq’s patient-written
summaries.

The medical RQE dataset is the MEDIQA
RQE dataset from the 2019 MEDIQA shared task
(Ben Abacha et al., 2019). Similarly to MeQSum,
the question pairs match a longer CHQ received by
the U.S. National Library of Medicine (NLM) and
a FAQ from NIH institutes. Whereas the train and
dev sets have automatically generated CHQs, the
test set has manually written CHQs. This results in
significantly higher dev set results than for test sets,
as has been observed during the 2019 MEDIQA
shared task.

In addition, we use two pretraining datasets. We
use the XSum dataset (Narayan et al., 2018), an
abstractive summarization benchmark, for ques-
tion summarization. For the RQE task, we use the
Recognizing Textual Entailment (RTE) dataset (Da-
gan et al., 2005; Haim et al., 2006; Giampiccolo
et al., 2007; Bentivogli et al., 2009) from the GLUE
benchmark (Wang et al., 2018).

4.2 Setup and Training Settings

All of our models use the BART large architec-
ture. Unless otherwise noted, all experiments on
the 3 question summarization datasets are made us-
ing a checkpoint pre-trained on the XSum dataset
using only the summarization objective, and all
experiments on the RQE dataset are made using
a checkpoint pre-trained on the RTE dataset, only
optimizing the cross-entropy loss.

We report ROUGE F1 scores for the question
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DATASET MeQSum HealthCareMagic iCliniq RQE
METRIC R1 R2 RL R1 R2 RL R1 R2 RL Accuracy
ABLATION OF DATA AUGMENTATION

Gradually Soft MTL + Existing Dataset 51.3 32.3 47.5 45.1 22.9 40.3 59.4 46.0 54.5 81.1%
ABLATION OF GRADUALLY SOFT PARAMETER-SHARING

Hard-shared Decoder + Data Aug. 52.0 34.0 47.9 44.3 23.3 41.5 60.1 47.0 56.3 77.5%
Soft-shared Decoder + Data Aug. 53.2 35.6 48.9 44.8 22.8 40.9 60.7 48.3 57.8 79.4%
Task-specific Decoder + Data Aug. 50.8 31.7 45.4 46.0 25.1 43.4 61.8 47.5 56.9 81.8%
OUR MODEL

Gradually Soft MTL + Data Aug. 54.5 37.9 50.2 46.9 24.8 43.2 62.3 48.7 58.5 82.1%

Table 2: Dev set results for the ablation studies on our two main novelties: our data augmentation algorithm, and
our gradually soft parameter-sharing method. The R1, R2 and RL metrics refer to the F1 scores of ROUGE-1,
ROUGE-2 and ROUGE-L (Lin, 2004).

Figure 3: Dev set performance of multi-task learning
as a function of the loss hyperparameter λ. The closer
λ is to 0, the more the loss focuses on the RQE ob-
jective, and vice-versa for the question summarization
objective.

summarization datasets, and accuracy for the RQE
dataset, as it is a binary classification task with two
labels: entailment and not entailment.

The learning rate for RQE experiments is 1 ×
10−5 and for the question summarization experi-
ments, it is 3× 10−5. We use an Adam optimizer
where the betas are 0.9 and 0.999 for summariza-
tion, and 0.9 and 0.98 for RQE. In all experiments,
the Adam epsilon is 10−8, and the dropout is 0.1.
We set the γ hyperparameter to 1× 10−7.

4.3 Balancing between the Objectives

Our loss function as defined in Eq.1 has a hyperpa-
rameter λ to balance between the question summa-
rization objective and the RQE objective. We run
experiments where λ varies from 0.1 to 0.9 in 0.1
increments. The results are in Figure 3. The best λ
values are 0.5 for MeQSum, 0.7 for iCliniq, 0.8 for
HealthCareMagic and 0.3 for MEDIQA RQE. For
the question summarization datasets, we notice that

the smaller the dataset, the more it benefits from
data-augmented MTL with RQE.

4.4 Ablation Studies

We perform two ablation studies to show the added
value of our main novelties: our equivalence-
inspired data augmentation algorithm and our grad-
ually soft parameter-sharing algorithm.

Data Augmentation. We compare our data aug-
mentation algorithm against the following alterna-
tive: instead of training using a synthetic dataset for
the auxiliary task, we choose a separate, existing
dataset for abstractive summarization or recogniz-
ing textual entailment. This follows the approach
taken by most MTL models. For the question sum-
marization task, we optimize the cross-entropy ob-
jective using the RTE dataset. For the RQE task,
we optimize the summarization objective using the
XSum dataset. For the sake of fair comparison, we
use the simultaneous MTL objective and the same
architecture. Results in Table 2 show a consistent
increase in performance across all datasets when
using our data augmentation method, suggesting
that in-domain MTL is more efficient.

Comparing Parameter-Sharing Configurations.
We compare our gradually soft parameter-sharing
method with 3 other parameter-sharing configura-
tions. For all configurations, we keep using our
data augmentation method, and sharing encoder
parameters entirely.

1. Hard-shared decoder: decoder parameters are
shared using hard parameter-sharing.

2. Soft-shared decoder: we apply soft parameter-
sharing on decoder parameters across all N layers
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using the following, unweighted loss term:

LS(θ) = γ ∗
N∑

n=1

∥∥θsum
dec,n − θent

dec,n
∥∥2 (3)

3. Task-specific decoder: we train two task-specific
decoders.

Our ablation study results in Table 2 show that
our gradually soft parameter-sharing method ex-
ceeds all 3 of the other parameter-sharing con-
figurations in RQE accuracy, and in the sum of
ROUGE F1 scores. These results show our pro-
posed smoother parameter-sharing transition be-
tween encoder and decoder layers brings about
higher performance.

4.5 Results and Discussion

4.5.1 Summarization Results
Baselines. We consider three main baselines. The
first one is BART (Lewis et al., 2019), where we
only train on the summarization task. The second
baseline trains BART on the same MTL settings
as Pasunuru et al. (2017), using alternative training
with entailment generation on the Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015) and having a shared decoder and task-
specific encoders. The third baseline trains BART
on the same MTL settings as Guo et al. (2018),
where, on top of the entailment generation task, we
add the question generation task using the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2016), and all parameters are soft-shared,
except for the task-specific first encoder layer and
last decoder layer.

In addition, we also report the baselines assessed
by Ben Abacha and Demner-Fushman (2019a)
for MeQSum. For data augmentation, they use
semantically-selected relevant question pairs from
the Quora Question Pairs dataset (Iyer et al., 2017).
Their results show that coverage loss (See et al.,
2017) diminishes the added value of data aug-
mentation in pointer-generator networks. Our
summarization-only BART baseline exceeds all of
the reported MeQSum baselines in ROUGE-1 F1.
Summarization Results. We report our summa-
rization results in Table 3. Compared to the single-
task BART baseline, our gradually soft multi-task
and data-augmented method performs better across
all three ROUGE metrics, and achieves increases
ranging from 1.4 to 5.5 points in ROUGE-1 F1.

This differences shows that our method is consis-
tently more efficient compared to training only on
summarization.

The other two MTL baselines are generally per-
forming better than the single-task BART baseline,
except for the larger HealthCareMagic dataset. We
observe that the different parameter-sharing con-
figurations and tasks used in the MTL baselines
are scoring about 1 to 4 points below our method
in terms of ROUGE-1 F1 scores. This shows that
our choice of tasks, simultaneous MTL loss, data
augmentation and gradually soft parameter-sharing
method work consistently better than existing MTL
methods.
Human Evaluation. Given that ROUGE is noto-
riously unreliable, we hire 2 annotators to judge
120 randomly selected summaries from the sum-
marization test sets, generated from the single-task
BART baseline and our own method in Table 3.
We ask the annotators to judge the Fluency, Co-
herence, Informativeness and Correctness of each
generated summary, using Best-Worst scaling, with
the possibility of ranking both summaries equally.
The annotators are presented with 2 generated sum-
maries, in a randomized order at each evaluation,
such that they cannot identify which method gener-
ated which summary.

Our human evaluation results are in Table 4.
Scores generally favor our method, more strongly
so in the abstractive datasets – HealthCareMagic
and MeQSum. However, we note an increase in
correctness for the more extractive iCliniq dataset.
On average, our gradually soft multi-task and data-
augmented method outputs summarized questions
that are more fluent and more informative than the
single-task BART baseline.

4.5.2 RQE Results and Discussion
Baselines. We compare our method to three base-
lines. The first one trains a single-task BART on
RQE, with a classification head pre-trained on RTE.
The second baseline is a feature-based SVM from
Ben Abacha and Demner-Fushman (2016) who in-
troduced the MEDIQA RQE dataset. The third
baseline (Zhou et al., 2019) is an adversarial MTL
method combining medical question answering and
RQE. The architecture consists of a shared trans-
former encoder using BioBERT embeddings (Lee
et al., 2020), separate classification heads for RQE
and medical QA, and a task discriminator for ad-
versarial training. A separate dataset is used for
medical QA (Ben Abacha et al., 2019).
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DATASET MeQSum HealthCareMagic iCliniq
METRIC R1 R2 RL R1 R2 RL R1 R2 RL
BASELINES

Seq2seq Attentional Model (Nallapati et al., 2016) 24.8 13.8 24.3 - - - - - -
Pointer-Generator Networks (PG) (See et al., 2017) 35.8 20.2 34.8 - - - - - -
PG + Data Augmentation (Ben Abacha and Demner-
Fushman, 2019a)

44.2 27.6 42.8 - - - - - -

PG + Coverage Loss (See et al., 2017) 39.6 23.1 38.5 - - - - - -
PG + Coverage Loss + Data Augmentation
(Ben Abacha and Demner-Fushman, 2019a)

41.8 24.8 40.5 - - - - - -

MODELS USING BART
BART (Lewis et al., 2019) 45.7 26.8 40.8 44.5 22.3 39.7 48.7 28.0 43.5
BART + Entailment Generation + MTL of Pasunuru
et al. (2017)

46.5 27.7 42.3 42.2 20.6 38.1 49.6 29.3 43.8

BART + Entailment Generation & Question Gener-
ation + MTL of Guo et al. (2018)

47.2 28.1 42.0 44.7 23.5 41.9 51.4 32.3 46.5

BART + Recognizing Question Entailment + Grad-
ually Soft MTL + Data Augmentation (Ours)

49.2 29.5 44.8 45.9 24.3 42.9 54.2 36.9 49.1

Table 3: Test set results on the 3 question summarization datasets.

DATASETS Fluency Coherence Informative Correct
MeQSum +11.25% +2.50% +7.50% 0%
HealthCareMagic +6.25% -2.50% +12.50% +1.25%
iCliniq +2.50% 0% +3.75% +5.00%

Table 4: Human Evaluation results on 120 samples
from the question summarization datasets. The percent-
ages indicate the added value of our method.

METHOD Accuracy
BART (Lewis et al., 2019) 52.1%
Feature-based SVM (Ben Abacha and Demner-
Fushman, 2016)

54.1%

BioBERT + Adversarial MTL with Medical
QA (Zhou et al., 2019)

63.6%

BART + Summarization + Gradually Soft
MTL + Data Aug. (Ours)

64.3%

Table 5: Accuracy results on MEDIQA RQE test set.

RQE Results. We show our RQE results in
Table 5. We see a 12% increase on the test set
compared to optimizing only on the RQE objective,
and 10% increase. Without a separate dataset or
embeddings trained on large-scale biomedical data,
our method is able to exceed the performance of
Zhou et al. (2019) by 0.7%. This confirms the
strength of our method, and shows our method can
increase performance in both RQE and Question
Summarization in the medical domain.

4.6 Performance in low-resource settings

We compare our gradually soft MTL and data-
augmented method with the single-task BART base-
line on four low-resource settings. For each dataset,

Figure 4: Test set 4-run average performance of our
method compared to single-task BART in low-resource
settings. Full dataset results are shown for comparison.

we limit the training data to a subset of 50, 100,
500 or 1000 datapoints, and keep the same training
settings. To avoid selection bias, we select four ran-
dom and distinct subsets per low-resource setting,
and show average ROUGE-1 F1 scores in Figure 4.

The results show that our approach is able to
perform much better in low-resource settings. We
notice in particular that, on all 4 datasets, the scores
of the single-task BART baseline for 100 and 1000
datapoints are lower than or roughly equal to the
scores of our method for a training subset of half
the size (50 and 500 datapoints respectively). This
suggests that our method’s performance increase is
not only related to additional datapoints, but also
its gradually soft MTL setting.
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5 Conclusions

We propose a novel multi-task learning approach
for medical question understanding. Our approach
trains on the tasks of RQE and question summa-
rization in a simultaneous, weighted MTL loss
function, where we add a loss term to constrain
the decoder layers to be close, and we loosen the
constraint gradually as we move higher up the lay-
ers. We show using the definitions of both tasks in
the medical domain that we can augment datasets,
such that we only need one dataset for MTL. Our
two ablation studies show that our gradually soft
parameter-sharing and our data augmentation al-
gorithm each increase performance individually.
We compare our method to single-task learning
and existing MTL work, and show improvements
across 3 medical question summarization datasets
and 1 medical RQE dataset. Finally, we test our
approach under low-resource settings: we find that
it is able to efficiently leverage small quantities of
data, and that these performance increases do not
only depend on additional data from augmentation.
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