@inproceedings{feng-etal-2021-sequence,
title = "A Sequence-to-Sequence Approach to Dialogue State Tracking",
author = "Feng, Yue and
Wang, Yang and
Li, Hang",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.135",
doi = "10.18653/v1/2021.acl-long.135",
pages = "1714--1725",
abstract = "This paper is concerned with dialogue state tracking (DST) in a task-oriented dialogue system. Building a DST module that is highly effective is still a challenging issue, although significant progresses have been made recently. This paper proposes a new approach to dialogue state tracking, referred to as Seq2Seq-DU, which formalizes DST as a sequence-to-sequence problem. Seq2Seq-DU employs two BERT-based encoders to respectively encode the utterances in the dialogue and the descriptions of schemas, an attender to calculate attentions between the utterance embeddings and the schema embeddings, and a decoder to generate pointers to represent the current state of dialogue. Seq2Seq-DU has the following advantages. It can jointly model intents, slots, and slot values; it can leverage the rich representations of utterances and schemas based on BERT; it can effectively deal with categorical and non-categorical slots, and unseen schemas. In addition, Seq2Seq-DU can also be used in the NLU (natural language understanding) module of a dialogue system. Experimental results on benchmark datasets in different settings (SGD, MultiWOZ2.2, MultiWOZ2.1, WOZ2.0, DSTC2, M2M, SNIPS, and ATIS) show that Seq2Seq-DU outperforms the existing methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="feng-etal-2021-sequence">
<titleInfo>
<title>A Sequence-to-Sequence Approach to Dialogue State Tracking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper is concerned with dialogue state tracking (DST) in a task-oriented dialogue system. Building a DST module that is highly effective is still a challenging issue, although significant progresses have been made recently. This paper proposes a new approach to dialogue state tracking, referred to as Seq2Seq-DU, which formalizes DST as a sequence-to-sequence problem. Seq2Seq-DU employs two BERT-based encoders to respectively encode the utterances in the dialogue and the descriptions of schemas, an attender to calculate attentions between the utterance embeddings and the schema embeddings, and a decoder to generate pointers to represent the current state of dialogue. Seq2Seq-DU has the following advantages. It can jointly model intents, slots, and slot values; it can leverage the rich representations of utterances and schemas based on BERT; it can effectively deal with categorical and non-categorical slots, and unseen schemas. In addition, Seq2Seq-DU can also be used in the NLU (natural language understanding) module of a dialogue system. Experimental results on benchmark datasets in different settings (SGD, MultiWOZ2.2, MultiWOZ2.1, WOZ2.0, DSTC2, M2M, SNIPS, and ATIS) show that Seq2Seq-DU outperforms the existing methods.</abstract>
<identifier type="citekey">feng-etal-2021-sequence</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.135</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.135</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1714</start>
<end>1725</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Sequence-to-Sequence Approach to Dialogue State Tracking
%A Feng, Yue
%A Wang, Yang
%A Li, Hang
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F feng-etal-2021-sequence
%X This paper is concerned with dialogue state tracking (DST) in a task-oriented dialogue system. Building a DST module that is highly effective is still a challenging issue, although significant progresses have been made recently. This paper proposes a new approach to dialogue state tracking, referred to as Seq2Seq-DU, which formalizes DST as a sequence-to-sequence problem. Seq2Seq-DU employs two BERT-based encoders to respectively encode the utterances in the dialogue and the descriptions of schemas, an attender to calculate attentions between the utterance embeddings and the schema embeddings, and a decoder to generate pointers to represent the current state of dialogue. Seq2Seq-DU has the following advantages. It can jointly model intents, slots, and slot values; it can leverage the rich representations of utterances and schemas based on BERT; it can effectively deal with categorical and non-categorical slots, and unseen schemas. In addition, Seq2Seq-DU can also be used in the NLU (natural language understanding) module of a dialogue system. Experimental results on benchmark datasets in different settings (SGD, MultiWOZ2.2, MultiWOZ2.1, WOZ2.0, DSTC2, M2M, SNIPS, and ATIS) show that Seq2Seq-DU outperforms the existing methods.
%R 10.18653/v1/2021.acl-long.135
%U https://aclanthology.org/2021.acl-long.135
%U https://doi.org/10.18653/v1/2021.acl-long.135
%P 1714-1725
Markdown (Informal)
[A Sequence-to-Sequence Approach to Dialogue State Tracking](https://aclanthology.org/2021.acl-long.135) (Feng et al., ACL-IJCNLP 2021)
ACL
- Yue Feng, Yang Wang, and Hang Li. 2021. A Sequence-to-Sequence Approach to Dialogue State Tracking. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1714–1725, Online. Association for Computational Linguistics.