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Abstract

Recent advances in Named Entity Recogni-
tion (NER) show that document-level contexts
can significantly improve model performance.
In many application scenarios, however, such
contexts are not available. In this paper, we
propose to find external contexts of a sentence
by retrieving and selecting a set of semanti-
cally relevant texts through a search engine,
with the original sentence as the query. We
find empirically that the contextual represen-
tations computed on the retrieval-based input
view, constructed through the concatenation
of a sentence and its external contexts, can
achieve significantly improved performance
compared to the original input view based only
on the sentence. Furthermore, we can improve
the model performance of both input views
by Cooperative Learning, a training method
that encourages the two input views to pro-
duce similar contextual representations or out-
put label distributions. Experiments show that
our approach can achieve new state-of-the-art
performance on 8 NER data sets across 5 do-
mains.1

1 Introduction

Pretrained contextual embeddings such as ELMo
(Peters et al., 2018), Flair (Akbik et al., 2018) and
BERT (Devlin et al., 2019) have significantly im-
proved the accuracy of Named Entity Recognition
(NER) models. Recent work (Devlin et al., 2019;
Yu et al., 2020; Yamada et al., 2020) found that
including document-level contexts of the target sen-
tence in the input of contextual embeddings meth-
ods can further boost the accuracy of NER models.
However, there are a lot of application scenarios

∗Yong Jiang and Kewei Tu are the corresponding authors.
‡: This work was conducted when Xinyu Wang was interning
at Alibaba DAMO Academy.

1Our code is publicly available at https://github.
com/Alibaba-NLP/CLNER.

senate democrats eliminated
the nuclear option when they
had the majority a few years
ago , over republican
objections .

President Obama called for eliminating the
legislative filibuster last month , which
could occur if Democrats retake the
Senate . Some Republicans say it s time
to undo a wrong committed by Reid .
Senate Republicans are considering using
the nuclear option to end a potential
Democratic filibuster and confirm Neil
Gorsuch to the Supreme Court . Senate
Republicans deployed the nuclear option
on Wednesday to drastically reduce the
time it takes to confirm hundreds of
President Trump s nominees .
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Figure 1: A motivating example from WNUT-17
dataset. The retrieved texts help the model to correctly
predict the named entities of “democrats” and “republi-
can”.

in which document-level contexts are unavailable
in practice. For example, there are sometimes no
available contexts in users’ search queries, tweets
and short comments in various domains such as
social media and E-commerce domains. When pro-
fessional annotators annotate ambiguous named
entities in such cases, they usually rely on domain
knowledge for disambiguation. This kind of knowl-
edge can often be found through a search engine.
Moreover, when the annotators are not sure about
a certain entity, they are usually encouraged to find
related knowledge through a search engine (Wang
et al., 2019). Therefore, we believe that NER mod-
els can benefit from such a process as well.

In this paper, we propose to improve NER mod-
els by retrieving texts related to the input sentence
by an off-the-shelf search engine. We re-rank the re-
trieved texts according to their semantic relevance
to the input sentence and select several top-ranking
texts as the external contexts. Consequently, we
concatenate the input sentence and external con-
texts together as a new retrieval-based input view
and feed it to the pretrained contextual embedding

https://github.com/Alibaba-NLP/CLNER
https://github.com/Alibaba-NLP/CLNER


1801

module, so that the resulting semantic representa-
tions of the input tokens can be improved. The
token representations are then fed into a CRF layer
for named entity prediction. A motivating example
is shown in Figure 1.

Moreover, we consider utilizing the new input
view to improve model performance with the origi-
nal input view that does not have external contexts.
This can be useful in application scenarios when ex-
ternal contexts are unavailable or undesirable (e.g.,
in time-critical scenarios). To this end, we propose
Cooperative Learning (CL) that encourages the two
input views to produce similar predictions. We pro-
pose two approaches to CL which minimize either
the L2 distances between the token representations
of the two input views or the Kullback–Leibler
(KL) divergence between the prediction distribu-
tions of the two input views during training.

Our experiments show that including the re-
trieved external contexts can significantly improve
the accuracy of NER models on 8 NER datasets
from 5 domains. With CL, the accuracy of the
NER models with both input views can be further
improved. Our approaches outperform previous
state-of-the-art approaches in each domain.

The contributions of this paper are:

1. We propose a simple and straight-forward way
to improve the contextual representation of an
input sentence through retrieving related texts
using a search engine. We take the retrieved
texts together with the input sentence as a new
retrieval-based view.

2. We propose Cooperative Learning to jointly im-
prove the accuracy of both input views in a uni-
fied model. We propose two approaches in CL
based on the L2 norm and KL divergence re-
spectively. CL can utilize unlabeled data for
further improvement.

3. We show the effectiveness of our approaches
in several NER datasets across 5 domains and
our approaches achieve state-of-the-art accuracy.
By leveraging a large amount of unlabeled data,
the performance can be further improved.

2 Framework

Given a sentence of n tokens x = {x1, · · · , xn},
the input sentence is fed into a search engine as a
query. The search engine returns the top k relevant
texts {x̂1, · · · , x̂k}. Our framework feeds these

texts into a re-ranking model. We concatenate l
top-ranking texts output from the re-ranking model
as the external contexts. The NER model is fed
with either an input view with the input sentence
(original input view) or a concatenation of the in-
put sentence and external contexts (retrieval-based
input view) as input. The model outputs the predic-
tions of labels y = {y1, · · · , yn} at each position
based on the CRF layer. To further improve the
model, we use Cooperative Learning to train a uni-
fied model that is strong in both input views. With
CL, the model is additionally constrained to be con-
sistent in the internal representations or the output
distributions of both input views. The architecture
of our framework is shown in Figure 2.

2.1 Re-ranking

Given an input sentence as a search query, the
search engine returns ranked relevant texts. How-
ever, the off-the-shelf search engine is highly opti-
mized for a fast speed over a large set of documents,
so it may sometimes produce semantically irrele-
vant results or rank the results using inaccurate
relevance scores. Since the NER task targets at
semantically recognizing named entities, it is more
helpful if the relevant texts are semantically sim-
ilar to the input sentence. Therefore, we need to
re-rank the retrieved texts so that the most seman-
tically relevant texts are chosen. We propose to
apply BERTScore (Zhang et al., 2020) to score the
relatedness of each retrieved text to the input sen-
tence. BERTScore is a language generation metric
that calculates a sum of cosine similarity between
token representations of two sentences. Therefore,
it is more likely that the search query and the re-
trieved texts have strong semantic relations when
BERTScore is large. The token representations
are generated from pretrained contextual embed-
dings such as BERT. Given the corresponding pre-
normalized token representations {r1, · · · , rn} of
the input sentence x and the pre-normalized token
representations {r̂1, · · · , r̂m} of a certain retrieved
text x̂ with m words, the Precision (P), Recall (R)
of BERTScore measure the semantic similarities
from one to another:

R =
1

n

∑
xi∈x

max
x̂j∈x̂

r>i r̂j ; P =
1

m

∑
x̂j∈x̂

max
xi∈x

r>i r̂j

We re-rank the retrieved texts by the F1 scores
F1=2 P·R

P+R and concatenate l top-ranking texts
{x̂1, · · · , x̂l} with F1 scores together as the ex-
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Figure 2: The architecture of our framework. An input sentence x is fed into a search engine to get k related
texts. The related texts are then fed into the re-ranking module. The framework selects l highest ranking related
texts output from the re-ranking module and feeds the texts to a transformer-based model together with the input
sentence. Finally, we calculate the negative likelihood loss LNLL and LNLL-EXT together with the CL loss (either
LCL-L2 or LCL-KL).

ternal contexts:

x̃ = [sep_token; x̂1; · · · ; x̂l]

where sep_token is a special token representing
a separate of sentences in the transformer-based
pretrained contextual embeddings (for example,
“[SEP]” in BERT).

2.2 NER Model
We solve the NER task as a sequence labeling prob-
lem. We apply a neural model with a CRF layer,
which is one of the most popular state-of-the-art
approaches to the task (Lample et al., 2016; Ma
and Hovy, 2016; Akbik et al., 2019). In the se-
quence labeling model, the input sentence x is fed
into a transformer-based pretrained contextual em-
beddings model to get the token representations
{v1, · · · ,vn} by vi=embedi(x). The token rep-
resentations are fed into a CRF layer to get the
conditional probability pθ(y|x):

ψ(y′, y,vi) = exp(WT
y vi + by′,y) (1)

pθ(y|x) =

n∏
i=1

ψ(yi−1, yi,vi)∑
y′∈Y(x)

n∏
i=1

ψ(y′i−1, y
′
i,vi)

where ψ is the potential function and θ represents
the model parameters. Y(x) denotes the set of all
possible label sequences given x. y0 is defined
to be a special start symbol. WT ∈ Rt×d and
b ∈ Rt×t are parameters computing emission and
transition scores respectively. d is the hidden size
of v and t is the size of the label set. During train-
ing, the negative log-likelihood loss for the input
sequence with gold labels y∗ is defined by:

LNLL(θ) = − log pθ(y
∗|x) (2)

In our approach, we concatenate the external
contexts x̃ at the end of the input sentence x to
form the retrieval-based input view. The token
representations are now given by:

{v′1, · · · ,v′n, · · · } = embed([x; x̃])

The architecture of our NER model is shown in
Figure 3. Now the conditional probability pθ(y|x)
becomes pθ(y|x, x̃). The loss function in Eq. 2
becomes:

LNLL-EXT(θ) = − log pθ(y
∗|x, x̃) (3)

2.3 Cooperative Learning
In practice, there are two application scenarios for
the NER model: 1) offline prediction, which re-
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Figure 3: An illustration of our NER model architec-
ture. “[CLS]” and “[SEP]” are an example of cls token
and sep token in the embedding.

quires high accuracy of the prediction but the pre-
diction speed is less emphasized; 2) online serv-
ing, which requires a faster prediction speed. The
retrieval-based input view meets the requirement
of the first scenario for its strong token representa-
tions. However, it does not meet the requirement
of the second scenario. The external contexts are
usually significantly longer than the input sentence
and a search engine may not meet the latency re-
quirements. These two issues significantly slow
down the prediction speed of the model. Therefore,
it is essential to improve the accuracy of the orig-
inal input views in a unified model to meet these
two scenarios.

Cooperative Learning targets at using the
retrieval-based input view to help improve the ac-
curacy of the model when there are no external
contexts available. CL adds constraints between
the internal representations or the output distribu-
tions between two input views to enforce that the
predictions of both views should be near. The ob-
jective function of CL is calculated by:

LCL(θ) = D(h([x; x̃]), h([x])) (4)

where D is a distance function between a function
hwith different inputs. Because the representations
or the distributions with retrieval-based input view
are usually informative, we do not backpropagate
the gradient through h([x; x̃]). We propose two
approaches for CL.

Token Representations: Stronger token repre-
sentations usually lead to better accuracy on the
task. Therefore, CL constrains the token represen-
tations of two input views to be similar. This helps

the model learn to predict the token representations
with external contexts even if the contexts are not
available. In this approach, D is the L2 norm to
represent the distances of the token representations:

LCL-L2(θ) =
n∑
i=1

||v′i − vi||22 (5)

Label Distributions: Since CL enforces the la-
bel predictions of both input views to be similar, a
straight-forward approach is constraining the label
distributions predicted by the model to be similar
with the two input views. In this approach, we use
the KL divergence as the function D. Then objec-
tive function in Eq. 4 becomes the KL divergence
between pθ(y|x, x̃) and pθ(y|x):

LCL-KL(θ)=
∑

y∈Y(x)

KL(pθ(y|x, x̃)||pθ(y|x)) (6)

With the CRF layer, the loss function is difficult
to calculate because the output space of pθ(y|•)
is exponential in size. To alleviate this issue, we
calculate the KL divergence between the marginal
distributions qθ(yi|x, x̃) and qθ(yi|x) at each po-
sition of the sentence to approximate Eq. 6. The
marginal distributions can be obtained using the
forward-backward algorithm:

α(yk) =
∑

{y0,...,yk−1}

k∏
i=1

ψ(yi−1, yi,vi)

β(yk) =
∑

{yk+1,...,yn}

n∏
i=k+1

ψ(yi−1, yi,vi)

qθ(yk|x) ∝ α(yk)× β(yk) (7)

As mentioned earlier, we do not back-propagate the
gradient through pθ(y|x, x̃). Therefore calculating
the KL divergence is equivalent to calculating the
cross-entropy loss between q(y|x, x̃) and q(y|x):

LCL-KL(θ)=−
n∑
i=1

t∑
yi=1

qθ(yi|x, x̃)logqθ(yi|x) (8)

Together with the negative log-likelihood losses in
Eq. 2, 3, the total loss in training is a summation
of label losses and a CL loss:

L(θ) = LNLL(θ) + LNLL-EXT(θ) + LCL(θ) (9)

where LCL(θ) can be one of the CL loss in Eq. 5,
8 or a summation of both of them.
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# Train # Dev # Test # Entity Labels Avg. Length Avg. Length w/ Context
WNUT-16 2,394 1,000 3,849 10 19.41 138.58
WNUT-17 3,394 1,009 1,287 6 18.48 139.49
CONLL-03 14,987 3,466 3,684 4 13.64 116.23
CONLL++ 14,987 3,466 3,466 4 13.64 116.23
BC5CDR 4,560 4,581 4,797 2 25.91 144.13
NCBI 5,424 923 940 1 25.01 135.76
E-COMMERCE 38,959 5,000 5,000 26 2.54 124.61

Table 1: Statistics of the dateset split, number of entity types and the average lengths with and without external
contexts.

3 Experiments

3.1 Settings
Datasets To show the effectiveness of our ap-
proach, we experiment on 8 NER datasets across 5
domains:

• Social Media: We use WNUT-16 (Strauss et al.,
2016) and WNUT-17 (Derczynski et al., 2017)
datasets collected from social media. We use the
standard split for these datasets.

• News: We use CoNLL-03 English (Tjong
Kim Sang and De Meulder, 2003) dataset and
CoNLL++ (Wang et al., 2019) dataset. The
CoNLL-03 dataset is the most popular dataset for
NER. CoNLL++ is a revision of the CoNLL-03
datasets. Wang et al. (2019) fixed annotation er-
rors on the test set by professional annotators and
improved the quality of the training data through
their CrossWeigh approach. We use the standard
dataset split for these datasets.

• Biomedical: We use BC5CDR (Li et al., 2016)
and NCBI-disease (Doğan et al., 2014) datasets,
which are two popular biomedical NER datasets.
We merge the training and development data
as training set following Nooralahzadeh et al.
(2019).

• Science and Technology: We use CBS SciTech
News dataset collected by Jia et al. (2019). The
dataset only contains the test set with the same la-
bel set as the CoNLL-03 dataset. We use the
dataset to evaluate the effectiveness of cross-
domain transferability from the news domain.

• E-commerce: We collect and annotate an inter-
nal dataset from one anonymous E-commerce
website. The dataset contains 25 named entity
labels for goods in short texts. We also collect
300,000 unlabeled sentences for semi-supervised
training.

We show the statistics of the datasets in Table 1.

Annotations of the E-commerce dataset We
manually labeled the user queries through crowd-
sourcing from www.aliexpress.com, which is a
real-world E-commerce website. For each query,
we asked one annotator to label the entities and ask
another annotator to check the quality. After that,
we randomly select 10% of the dataset and ask the
third annotator to check the accuracy. As a result,
the overall averaged query-level accuracy2 is 95%.
The dataset will not be released due to user privacy.

Retrieving and Ranking We use an internal
E-commerce search engine for the E-commerce
dataset. For the other datasets, we use Google
Search as the search engine. Google Search is an
off-the-shelf search engine and can simulate the
offline search over various domains. We use sum-
marized descriptions from the search results as the
retrieved texts3. As Google Search limits the max-
imal length of searching queries to 32 words, we
chunk a sentence into multiple sub-sentences based
on punctuation if the sentence is longer than 30,
feed each sub-sentence to the search engine, and
retrieve up to 20 results. We filter the retrieved
texts that contain any part of the datasets. Our re-
ranking module selects top 6 relevant texts4 as the
external contexts of the input sentence and chunk
the external contexts if the total sub-token lengths
of the input sentence and external contexts exceeds
510.

Model Configurations For the re-ranking mod-
ule, we use Roberta-Large (Liu et al., 2019) for
token representations which is the default config-
uration in the code5 of BERTScore (Zhang et al.,
2020). For token representations in the NER model,

2the accuracy of a query counts 1.0 if all the entities in the
query are correctly recognized and 0.0 otherwise.

3If the descriptions are not available, we use the titles of
the results instead.

4We determined that 6 is a reasonable number based on
preliminary experiments.

5https://github.com/Tiiiger/bert_score

www.aliexpress.com
https://github.com/Tiiiger/bert_score
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we use pretrained Bio-BERT (Lee et al., 2020) for
datasets from the biomedical domain and use XLM-
RoBERTa (Conneau et al., 2020) for datasets from
other domains.

Training During training, we fine-tune the
pretrained contextual embeddings by AdamW
(Loshchilov and Hutter, 2018) optimizer with a
batch size of 4. We use a learning rate of 5× 10−6

to update the parameters in the pretrained contex-
tual embeddings. For the CRF layer parameters, we
use a learning rate of 0.05. We train the NER mod-
els for 10 epochs for the datasets in Social Media
and Biomedical domains while we train the NER
models for 5 epochs for other datasets for efficiency
as these datasets have more training sentences.

3.2 Results

We experiment on the following approaches:

• LUKE is a very recent state-of-the art model on
CoNLL-03 NER dataset proposed by Yamada
et al. (2020). We use the same parameter setting
as Yamada et al. (2020) and use a single sentence
as the input instead of taking document-level con-
texts in the dataset as in Yamada et al. (2020) for
fair comparison.

• W/O CONTEXT represents training the NER
model without external contexts (Eq. 2), which
is the baseline of our approaches.

• W/ CONTEXT represents training the NER
model with external contexts (Eq. 3).

• CL-L2 represents minimizing the L2 distance
between token representations (Eq. 5).

• CL-KL represents minimizing the KL diver-
gence (Eq. 8) between CRF output distributions.

Besides, we also compare our approaches with pre-
vious state-of-the-art approaches over entity-level
F1 scores6. During the evaluation, our approaches
are evaluated using inputs without external con-
texts (W/O CONTEXT) and inputs with them (W/
CONTEXT). We report the results averaged over 5
runs in our experiments. The results are listed in

6We do not compare the results from previous work such
as Yu et al. (2020); Luoma and Pyysalo (2020); Yamada et al.
(2020) that utilizes the document-level contexts in CoNLL-03
NER here. We conduct a comparison with these approaches
in Appendix A.

Table 27. With the external contexts, our models
with CL outperform previous state-of-the-art ap-
proaches on most of the datasets. Our approaches
significantly outperform the baseline that is trained
without external contexts with only one exception.
Comparing with LUKE, our approaches and our
baseline outperform LUKE in all the cases. The
possible reason is that LUKE is pretrained only us-
ing long word sequences, which makes the model
prone to fail to capture the information of entities
based on short sentences8. For our approaches,
with CL, the accuracy can be improved on both
input views comparing with W/O CONTEXT and
W/ CONTEXT, which shows adding constraints
between the two views during training helps the
model better utilize the original text information.
For the two constraints in CL, we find that CL-KL
is relatively stronger than CL-L2 in a majority of
the cases.

3.3 Cross-Domain Transfer

For cross-domain transfer, we train the models on
the CoNLL-03 datasets, evaluate the accuracy on
the CBS SciTech News dataset, and compare the
results with those in Jia et al. (2019). We evalu-
ate our approaches with each input view and the
results are shown in Table 3. Our approaches can
improve the accuracy in cross-domain evaluation.
The external contexts during evaluation can help to
improve the accuracy of W/ CONTEXT. However,
the gap between the two input views for the CL
approaches is diminished. The observation shows
that CL is able to improve the accuracy in cross-
domain transfer for both views and eliminate the
gap between the two views.

3.4 Semi-supervised Cooperative Learning

Cooperative learning can take advantage of large
amounts of unlabeled text for further improvement.
We jointly train on the labeled data and unlabeled
data in training to form a semi-supervised train-
ing manner. During training, we alternate between
minimizing the loss (Eq. 9) for labeled data and the
CL loss for unlabeled data (Eq. 4). We conduct the
experiment on the E-commerce dataset as an exam-

7For the result of Bio-BERT (Lee et al., 2020) on NCBI-
disease dataset, we report the results reported in official code
(https://github.com/dmis-lab/biobert). The
results (89.71 in NCBI-disease) reported in the paper used
token-level F1 score instead of entity-level F1 score.

8We have confirmed with the authors of LUKE (Yamada
et al., 2020) that the accuracy on the CoNLL-03 dataset is
consistent with their experimental results.

https://github.com/dmis-lab/biobert
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Social Media News Biomedical E-commerceWNUT-16 WNUT-17 CoNLL-03 CoNLL++ BC5CDR NCBI
Zhou et al. (2019) 55.43 42.83 - - - - -
Nguyen et al. (2020) 52.10 56.50 - - - - -
Nie et al. (2020) 55.01 50.36 - - - - -
Baevski et al. (2019) - - 93.50 - - - -
Wang et al. (2019) - - 93.43 94.28 - - -
Li et al. (2020) - - 93.33 - - - -
Nooralahzadeh et al. (2019) - - - - 89.93 - -
Bio-Flair (2019) - - - - 89.42 88.85 -
Bio-BERT (2020) - - - - - 87.70 -

Evaluation: W/O CONTEXT
LUKE (2020) 54.04 55.22 92.42 93.99 89.18 87.62 77.64
W/O CONTEXT 56.04 57.86 93.03 94.20 90.52 88.65 81.47
CL-L2 57.35† 58.68† 93.08 94.38† 90.70† 89.20† 82.43†

CL-KL 58.14† 59.33† 93.21† 94.55† 90.73† 89.24† 82.31†

Evaluation: W/ CONTEXT
W/ CONTEXT 57.43† 60.20† 93.27† 94.56† 90.76† 89.01† 83.15†

CL-L2 58.61† 60.26† 93.47† 94.62† 90.99† 89.22† 83.87†

CL-KL 58.98† 60.45† 93.56† 94.81† 90.93† 88.96† 83.99†

Table 2: A comparison among recent state-of-the-art models, the baseline and our approaches. † represents the
model is significantly stronger than the baseline model (W/O CONTEXT) with p < 0.05 on Student’s T test.

Evaluation
Science and Technology

Approach W/O CONTEXT W/ CONTEXT

Jia et al. (2019) 73.59 -
W/O CONTEXT 75.87 75.74
W/ CONTEXT 75.72 75.94
CL-L2 76.16 76.10
CL-KL 76.37 76.38

Table 3: A comparison of different approaches in trans-
fer learning. The models are trained on the CoNLL-03
dataset.

Evaluation
Approach W/O CONTEXT W/ CONTEXT

CL-L2 82.43 83.87
CL-KL 82.31 83.99
CL–L2+SEMI 82.88† 83.92
CL-KL+SEMI 82.58† 84.10

Table 4: A comparison between of CL approaches
with and without semi-supervised learning. SEMI rep-
resents the approaches with semi-supervised learning.
† represents the approach is significantly (p < 0.05)
stronger than the approach without semi-supervised
learning with the same input view.

ple. Results in Table 4 show that the accuracy of
both input views can be improved especially for the
input without external contexts, which shows the
effectiveness of CL in semi-supervised learning.

4 Analysis

We use the WNUT-17 dataset in the analysis.

SE FM BS BS+tf-idf
AVG. 59.95 59.54 60.20 59.71
BEST 61.79 60.89 62.29 60.96

Table 5: A comparison of different re-ranking ap-
proaches by the F1 scores on WNUT-17. SE: Search
engine. FM: Fuzzy match score. BS: BERTScore.

4.1 Comparison of Re-ranking Approaches

Various re-ranking approaches may affect the to-
ken representations of the model. We compare our
approach with three other re-ranking approaches.
The first is the ranking from the search engine with-
out any re-ranking approaches. The second is re-
ranking through a fuzzy match score. The approach
has been widely applied in a lot of previous work
(Gu et al., 2018; Zhang et al., 2018; Hayati et al.,
2018; Xu et al., 2020). The third is BERTScore
with tf-idf importance weighting which makes rare
words more indicative than common words in scor-
ing. We train our models (W/ CONTEXT) with
external contexts from these re-ranking approaches
and report the averaged and best results on WNUT-
17 in Table 5. Our results show that re-ranking with
BERTScore performs the best, which shows the se-
mantic relevance is helpful for the performance.
However, for BERTScore with the tf-idf weighting,
the accuracy of the model drops significantly (with
p < 0.05). The possible reason might be that the
tf-idf weighting gives high weights to irrelevant
texts with rare words during re-ranking.
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WNUT-17
w/ Context (Ours) 60.20
w/o Context 57.86
w/ Context (Dataset) 57.21
w/ Context (Generated) 57.71
w/ Context (Random Retrieved) 57.53
w/ Context (Random Data) 47.69

Table 6: A comparison among different contexts types.

Evaluation
Approach W/O CONTEXT W/ CONTEXT

W/O CONTEXT 57.86 59.40
W/ CONTEXT 57.46 60.20
W/O CL 58.14 59.64
CL-L2 + CL-KL 58.69 60.16
CL-L2 58.68 60.26
CL-KL 59.33 60.45

Table 7: An ablation study of the training and predic-
tion of models.

4.2 How the Context Quality Affects
Accuracy

We analyze how the NER model will perform when
the quality of external contexts varies. We train and
evaluate the NER model in four conditions with
various contexts. The first one takes each dataset
split as a document and encodes each sentence
with document-level contexts. In this case, we
encode the document-level contexts following the
approach of Yamada et al. (2020). The second one
uses GPT-2 (Radford et al., 2019) to generate 6 rel-
evant sentences as external contexts. The other two
conditions randomly select from the retrieved texts
or the dataset as external contexts. Results in Table
6 show that all these conditions result in inferior
accuracy comparing with the model without any ex-
ternal context. However, our external contexts are
more semantically relevant to the input sentence
and helpful for prediction.

4.3 Ablation Study

To show the effectiveness of CL, we conduct three
ablation studies for our approach. The first one is
training the NER model based on one view and pre-
dict on the other. The second is jointly training both
views without the CL loss term (removing LCL(θ)
in Eq. 9). The final one is using both CL losses to
train the model (LCL(θ) = LCL-L2(θ)+LCL-KL(θ)
in Eq. 9). Results in Table 7 show that the exter-
nal context can help to improve the accuracy even
when the NER model is trained without the con-
texts. However, when the model is trained with
the external contexts, the accuracy of the model

drops when predicting the inputs without external
contexts. In joint training without CL, the accuracy
of the model over inputs without contexts can be
slightly improved but the accuracy over inputs with
contexts drops, which shows the benefit of adding
CL. For the model trained with both CL losses, we
find no improvement over the models trained with
a single CL loss.

5 Related Work

Named Entity Recognition Named Entity
Recognition (Sundheim, 1995) has been studied
for decades. Most of the work takes NER as
a sequence labeling problem and applies the
linear-chain CRF (Lafferty et al., 2001) to achieve
state-of-the-art accuracy (Ma and Hovy, 2016;
Lample et al., 2016; Akbik et al., 2018, 2019;
Wang et al., 2020b). Recently, the improvement
of accuracy mainly benefits from stronger token
representations such as pretrained contextual
embeddings such as BERT (Devlin et al., 2019),
Flair (Akbik et al., 2018) and LUKE (Yamada
et al., 2020). Very recent work (Yu et al., 2020;
Yamada et al., 2020) utilizes the strength of
pretrained contextual embeddings over long-range
dependency and encodes the document-level
contexts for token representations to achieve
state-of-the-art accuracy on CoNLL 2002/2003
NER datasets (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003).

Improving Models through Retrieval Retriev-
ing related texts from a certain database (such as
the training set) has been widely applied in tasks
such as neural machine translation (Gu et al., 2018;
Zhang et al., 2018; Xu et al., 2020), text generation
(Weston et al., 2018; Kim et al., 2020), semantic
parsing (Hashimoto et al., 2018; Guo et al., 2019).
Most of the work uses the retrieved texts to guide
the generation or refine the retrieved texts through
the neural model, while we take the retrieved texts
as the contexts of the input sentence to improve
the semantic representations of the input tokens.
For the re-ranking models, fuzzy match score (Gu
et al., 2018; Zhang et al., 2018; Hayati et al., 2018;
Xu et al., 2020), attention mechanisms (Cao et al.,
2018; Cai et al., 2019), and dot products between
sentence representations (Lewis et al., 2020; Xu
et al., 2020) are usual scoring functions to re-rank
the retrieved texts. Instead, we use BERTScore to
re-rank the retrieved texts instead as BERTScore
evaluates semantic correlations between the texts
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based on pretrained contextual embeddings.

Multi-View Learning Multi-View Learning is
a technique applied to inputs that can be split
into multiple subsets. Co-training (Blum and
Mitchell, 1998) and co-regularization (Sindhwani
and Niyogi, 2005) train a separate model for each
view. These approaches are semi-supervised learn-
ing techniques that require two independent views
of the data. The model with higher confidence
is applied to construct additional labeled data by
predicting on unlabeled data. Sun (2013) and Xu
et al. (2013) have extensively studied various multi-
view learning approaches. Hu et al. (2021) shows
the effectiveness of multi-view learning on cross-
lingual structured prediction tasks. Recently, Clark
et al. (2018) proposed Cross-View Training (CVT),
which trains a unified model instead of multiple
models and targets at minimizing the KL diver-
gence between the probability distributions of the
model and auxiliary prediction modules. Compar-
ing with CVT, CL targets at improving the accu-
racy of two kinds of inputs rather than only one of
them. We also propose to minimize the distance
of token representations between different views
in addition to KL-divergence. Besides, CL utilizes
the external contexts and therefore we do not need
to construct auxiliary prediction modules in the
model. Moreover, CVT cannot be directly applied
to our transformer-based embeddings. Finally, our
decoding layer in the model uses the CRF layer
instead of the simple Softmax layer as in CVT. The
CRF layer is stronger but more difficult for KL-
divergence computation.

Knowledge Distillation Knowledge distillation
(Buciluǎ et al., 2006; Hinton et al., 2015) trans-
fers the knowledge of “teacher” models to smaller
“student” models through minimizing the KL di-
vergence of prediction probability distribution be-
tween the models. In speech recognition (Huang
et al., 2018) and natural language processing (Wang
et al., 2020a, 2021b), the marginal probability dis-
tribution of the linear-chain CRF layer has been
applied to distill the knowledge between teacher
models and student models. Comparing with these
approaches, our approaches train a single unified
model instead of transferring the knowledge be-
tween two models. We also show that the accuracy
of both views can be improved with our approaches,
unlike in knowledge distillation only the student
model is updated and improved.

6 Conclusion

In this paper, we propose to improve the NER
model’s accuracy by retrieving related contexts
from a search engine as external contexts of the
inputs. To improve the robustness of the models
when no external contexts are available, we propose
Cooperative Learning. Cooperative Learning adds
constraints between two input views over either
the token representations or label distributions of
both input views to be consistent. Empirical results
show that our approach significantly outperforms
the baseline models and previous state-of-the-art
approaches on the datasets over 5 domains. We also
show the effectiveness of Cooperative Learning in
a semi-supervised training manner.
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Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’06, pages 535–541, New York, NY, USA.
ACM.

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xi-
aojiang Liu, and Shuming Shi. 2019. Retrieval-
guided dialogue response generation via a matching-
to-generation framework. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1866–1875, Hong Kong,
China. Association for Computational Linguistics.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei.
2018. Retrieve, rerank and rewrite: Soft template
based neural summarization. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 152–161, Melbourne, Australia. Association
for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.
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Approach CoNLL-03
Yu et al. (2020)† 93.50
Yamada et al. (2020) 94.30
Luoma and Pyysalo (2020)† 93.74
Wang et al. (2021a) 94.60
W/ DOC CONTEXT 94.12
W/O CONTEXT 93.30
W/ CONTEXT 93.55
CL-L2 93.68
CL-KL 93.85

Table 8: A comparison of retrieved contexts and
document-level contexts. †: These approaches are
trained on training and development sets.

A Retrieved Contexts Versus
Document-level contexts on CoNLL-03

We conduct a comparison between our retrieved
contexts and the document-level contexts on
CoNLL-03 datasets. In Table 8, we report the best
model on development set following Yamada et al.
(2020). Comparing with previous state-of-the-art
approaches with encoding document-level contexts,
our approaches are competitive and even stronger
than some of the previous approaches utilizing max-
imal document-level contexts. Comparing with
our model trained on document-level contexts (W/
DOC CONTEXT), we find that there is still a gap
between the document-level contexts and retrieved
contexts but our CL approaches can reduce the gap
between these two contexts.


