@inproceedings{qin-etal-2021-gl,
title = "{GL}-{GIN}: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling",
author = "Qin, Libo and
Wei, Fuxuan and
Xie, Tianbao and
Xu, Xiao and
Che, Wanxiang and
Liu, Ting",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.15",
doi = "10.18653/v1/2021.acl-long.15",
pages = "178--188",
abstract = "Multi-intent SLU can handle multiple intents in an utterance, which has attracted increasing attention. However, the state-of-the-art joint models heavily rely on autoregressive approaches, resulting in two issues: slow inference speed and information leakage. In this paper, we explore a non-autoregressive model for joint multiple intent detection and slot filling, achieving more fast and accurate. Specifically, we propose a Global-Locally Graph Interaction Network (GL-GIN) where a local slot-aware graph interaction layer is proposed to model slot dependency for alleviating uncoordinated slots problem while a global intent-slot graph interaction layer is introduced to model the interaction between multiple intents and all slots in the utterance. Experimental results on two public datasets show that our framework achieves state-of-the-art performance while being 11.5 times faster.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qin-etal-2021-gl">
<titleInfo>
<title>GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Libo</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fuxuan</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianbao</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-intent SLU can handle multiple intents in an utterance, which has attracted increasing attention. However, the state-of-the-art joint models heavily rely on autoregressive approaches, resulting in two issues: slow inference speed and information leakage. In this paper, we explore a non-autoregressive model for joint multiple intent detection and slot filling, achieving more fast and accurate. Specifically, we propose a Global-Locally Graph Interaction Network (GL-GIN) where a local slot-aware graph interaction layer is proposed to model slot dependency for alleviating uncoordinated slots problem while a global intent-slot graph interaction layer is introduced to model the interaction between multiple intents and all slots in the utterance. Experimental results on two public datasets show that our framework achieves state-of-the-art performance while being 11.5 times faster.</abstract>
<identifier type="citekey">qin-etal-2021-gl</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.15</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.15</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>178</start>
<end>188</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling
%A Qin, Libo
%A Wei, Fuxuan
%A Xie, Tianbao
%A Xu, Xiao
%A Che, Wanxiang
%A Liu, Ting
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F qin-etal-2021-gl
%X Multi-intent SLU can handle multiple intents in an utterance, which has attracted increasing attention. However, the state-of-the-art joint models heavily rely on autoregressive approaches, resulting in two issues: slow inference speed and information leakage. In this paper, we explore a non-autoregressive model for joint multiple intent detection and slot filling, achieving more fast and accurate. Specifically, we propose a Global-Locally Graph Interaction Network (GL-GIN) where a local slot-aware graph interaction layer is proposed to model slot dependency for alleviating uncoordinated slots problem while a global intent-slot graph interaction layer is introduced to model the interaction between multiple intents and all slots in the utterance. Experimental results on two public datasets show that our framework achieves state-of-the-art performance while being 11.5 times faster.
%R 10.18653/v1/2021.acl-long.15
%U https://aclanthology.org/2021.acl-long.15
%U https://doi.org/10.18653/v1/2021.acl-long.15
%P 178-188
Markdown (Informal)
[GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling](https://aclanthology.org/2021.acl-long.15) (Qin et al., ACL-IJCNLP 2021)
ACL