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Abstract

Neural entity typing models typically repre-
sent fine-grained entity types as vectors in a
high-dimensional space, but such spaces are
not well-suited to modeling these types’ com-
plex interdependencies. We study the ability
of box embeddings, which embed concepts as
d-dimensional hyperrectangles, to capture hi-
erarchies of types even when these relation-
ships are not defined explicitly in the ontol-
ogy. Our model represents both types and en-
tity mentions as boxes. Each mention and its
context are fed into a BERT-based model to
embed that mention in our box space; essen-
tially, this model leverages typological clues
present in the surface text to hypothesize a
type representation for the mention. Box con-
tainment can then be used to derive both the
posterior probability of a mention exhibiting a
given type and the conditional probability rela-
tions between types themselves. We compare
our approach with a vector-based typing model
and observe state-of-the-art performance on
several entity typing benchmarks. In addi-
tion to competitive typing performance, our
box-based model shows better performance in
prediction consistency (predicting a supertype
and a subtype together) and confidence (i.e.,
calibration), demonstrating that the box-based
model captures the latent type hierarchies bet-
ter than the vector-based model does.1

1 Introduction

The development of named entity recognition and
entity typing has been characterized by a growth in
the size and complexity of type sets: from 4 (Tjong
Kim Sang and De Meulder, 2003) to 17 (Hovy
et al., 2006) to hundreds (Weischedel and Brun-
stein, 2005; Ling and Weld, 2012) or thousands
(Choi et al., 2018). These types follow some kind

1The code is available at https://github.com/
yasumasaonoe/Box4Types.

of hierarchical structure (Weischedel and Brunstein,
2005; Ling and Weld, 2012; Gillick et al., 2014;
Murty et al., 2018), so effective models for these
tasks frequently engage with this hierarchy explic-
itly. Prior systems incorporate this structure via
hierarchical losses (Murty et al., 2018; Xu and
Barbosa, 2018; Chen et al., 2020) or by embed-
ding types into a high-dimensional Euclidean or
hyperbolic space (Yogatama et al., 2015; López and
Strube, 2020). However, the former approach re-
quires prior knowledge of the type hierarchy, which
is unsuitable for a recent class of large type sets
where the hierarchy is not explicit (Choi et al.,
2018; Onoe and Durrett, 2020a). The latter ap-
proaches, while leveraging the inductive bias of
hyperbolic space to represent trees, lack a proba-
bilistic interpretation of the embedding and do not
naturally capture all of the complex type relation-
ships beyond strict containment.

In this paper, we describe an approach that rep-
resents entity types with box embeddings in a high-
dimensional space (Vilnis et al., 2018). We build an
entity typing model that jointly embeds each entity
mention and entity types into the same box space to
determine the relation between them. Volumes of
boxes correspond to probabilities and taking inter-
sections of boxes corresponds to computing joint
distributions, which allows us to model mention-
type relations (what types does this mention ex-
hibit?) and type-type relations (what is the type
hierarchy?). Concretely, we can compute the condi-
tional probability of a type given the entity mention
with straightforward volume calculations, allowing
us to construct a probabilistic type classification
model.

Compared to embedding types as points in Eu-
clidean space (Ren et al., 2016a), the box space
is expressive and suitable for representing entity
types due to its geometric properties. Boxes can
nest, overlap, or be completely disjoint to capture

https://github.com/yasumasaonoe/Box4Types
https://github.com/yasumasaonoe/Box4Types
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… The Hunger Games, the 
first of 3 best selling books by 
Suzanne Collins.

Figure 1: A mention (Suzanne Collins) and three entity types are embedded into a vector space (left) and a box
space (right). The box space can more richly represent hierarchical interactions between types and uncertainty
about the properties of the mention.

subtype, correlation, or disjunction relations, prop-
erties which are not explicitly manifested in Eu-
clidean space. The nature of the box computation
also allows these complex relations to be repre-
sented in a lower-dimensional space than needed
by vector-based models.

In our experiments, we focus on comparing
our box-based model against a vector-based base-
line. We evaluate on four entity typing bench-
marks: Ultra-fine Entity Typing (Choi et al., 2018),
OntoNotes (Gillick et al., 2014), BBN (Weischedel
and Brunstein, 2005), and FIGER (Ling and Weld,
2012). To understand the behavior of box embed-
dings, we further analyze the model outputs in
terms of consistency (predicting coherent super-
types and subtypes together), robustness (sensitiv-
ity against label noise), and calibration (i.e., model
confidence). Lastly, we compare entity representa-
tions obtained by the box-based and vector-based
models. Our box-based model outperforms the
vector-based model on two benchmarks, Ultra-fine
Entity Typing and OntoNotes, achieving state-of-
the-art-performance. In our other experiments, the
box-based model also performs better at predict-
ing supertypes and subtypes consistently and being
robust against label noise, indicating that our ap-
proach is capable of capturing the latent hierarchi-
cal structure in entity types.

2 Motivation

When predicting class labels like entity types that
exhibit a hierarchical structure, we naturally want
our model’s output layer to be sensitive to this struc-
ture. Previous work (Ren et al., 2016a; Shimaoka
et al., 2017; Choi et al., 2018; Onoe and Durrett,
2019, inter alia) has fundamentally treated types as
vectors, as shown in the left half of Figure 1. As is
standard in multiclass or multi-label classification,
the output layer of these models typically involves
taking a dot product between a mention embedding

and each possible type. A type could be more gen-
eral and predicted on more examples by having
higher norm,2 but it is hard for these representa-
tions to capture that a coarse type like Person
will have many mutually orthogonal subtypes.

By contrast, box embeddings naturally represent
these kinds of hierarchies as shown in the right
half of Figure 1. A box that is completely con-
tained in another box is a strict subtype of that
box: any entity exhibiting the inner type will ex-
hibit the outer one as well. Overlapping boxes like
Politician and Author represent types that
are not related in the type hierarchy but which are
not mutually exclusive. The geometric structure
of boxes enables complex interactions with only a
moderate number of dimensions (Dasgupta et al.,
2020). Vilnis et al. (2018) also define a probability
measure over the box space, endowing it with prob-
abilistic semantics. If the boxes are restricted to a
unit hypercube, for example, the volumes of type
boxes represent priors on types and intersections
capture joint probabilities, which can then be used
to derive conditional probabilities.

Critically, box embeddings have previously been
trained explicitly to reproduce a given hierarchy
such as WordNet. A central question of this work
is whether box embeddings can be extended to
model the hierarchies and type relationships that
are implicit in entity typing data: we do not as-
sume access to explicit knowledge of a hierar-
chy during training. While some datasets such as
OntoNotes have orderly ontologies, recent work on
entity typing has often focused on noisy type sets
from crowdworkers (Choi et al., 2018) or derived
from Wikipedia (Onoe and Durrett, 2020a). We
show that box embeddings can learn these struc-
tures organically; in fact, they are not restricted
to only tree structures, but enable a natural Venn-
diagram style of representation for concepts, as

2We do not actually observe this in our vector-based model.
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Figure 2: Box-based entity typing model. The mention and context (left) are embedded into the box space and
probabilities for each type are computed with a soft volume computation.

with Politician and Author in Figure 1.

3 Type Modeling with Boxes

3.1 Background: Box Embeddings

Our box embeddings represent entity types as
n-dimensional hyperrectangles. A box x is
characterized by two points (xm, xM ), where
xm, xM ∈ Rd are the minimum and the maximum
corners of the box x and xm,i ≤ xM,i for each
coordinate i ∈ {1, ..., d}. The volume of the box
x is computed as Vol(x) =

∏︁
i(xM,i − xm,i).

If we normalize the volume of the box space
to be 1, we can interpret the volume of each
box as the marginal probability of a mention
exhibiting the given entity type. Further-
more, the intersection volume between two
boxes, x and y, is defined as Vol(x ∩ y) =∏︁

imax (min(xM,i, yM,i)−max(xm,i, ym,i), 0)
and can be seen as the joint probability of entity
types x and y. Thus, we can obtain the conditional
probability P (y | x) = Vol(x∩y)

Vol(x) .

Soft boxes Computing conditional probabilities
based on hard intersection poses some practical dif-
ficulties in the context of machine learning: sparse
gradients caused by disjoint or completely con-
tained boxes prevent gradient-based optimization
methods from working effectively. To ensure that
gradients always flow for disjoint boxes, Li et al.
(2019) relax the hard edges of the boxes using
Gaussian convolution. We follow the more recent
approach of Dasgupta et al. (2020), who further im-
prove training of box embeddings using max and
min Gumbel distributions (i.e., Gumbel boxes) to
represent the min and max coordinates of a box.

3.2 Box-based Multi-label Type Classifier

Let s denote a sequence of context words and m
denote an entity mention span in s. Given the in-
put tuple (m, s), the output of the entity typing

model is an arbitrary number of predicted types
{t0, t1, ...} ∈ T , where tk is an entity type be-
longing to a type inventory T . Because we do not
assume an explicit type hierarchy, we treat entity
typing as a multi-label classification problem, or
|T | independent binary classification problems for
each mention.

Section 3.3 will describe how to use a BERT-
based model to predict a mention and context
box3 x from (m, s). For now, we assume x is
given and we are computing the probability of
that mention exhibiting the kth entity type, with
type box yk. Each type tk ∈ T has a dedicated
box yk, which is parameterized by a center vec-
tor cky ∈ Rd and an offset vector oky ∈ Rd. The
minimum and maximum corners of a box yk are
computed as ykm = σ(cky − softplus(oky)) and
ykM = σ(cky + softplus(oky)) respectively, so that
parameters c ∈ Rd and o ∈ Rd yield a valid box
with nonzero volume.

The conditional probability of the type tk given
the mention and context (m, s) is calculated as

pθ(t
k | m, s) =

Vol(zk)
Vol(x)

=
Vol(x ∩ yk)

Vol(x)
,

where zk is the intersection between x and yk ((2)
and (3) in Figure 2). Our final type predictions
are based on thresholding these probabilities; i.e.,
predict the type if p > 0.5.

As mentioned in Section 3.1, we use the Gumbel
box approach of Dasgupta et al. (2020), in which
the box coordinates are interpreted as the location
parameter of a Gumbel max (resp. min) distribution
with variance β. In this approach, the intersection

3We could represent mentions as points instead of boxes;
however, representing them as boxes enables the size of a
mention box to naturally reflect epistemic uncertainty about a
mention’s types given limited information.
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box coordinates become

zkm = β ln

(︃
e

xm
β + e

ykm
β

)︃
,

zkM = −β ln

(︄
e
−xM

β + e
− ykM

β

)︄
.

Following Dasgupta et al. (2020), we approximate
the expected volume of a Gumbel box using a soft-
plus function:

Vol(x) ≈
∏︂
i

softplus

(︃
xM,i − xm,i

β
− 2γ

)︃
,

where i is an index of each coordinate and γ ≈
0.5772 is the Euler–Mascheroni constant,4 and
softplus(x) = 1

t log(1 + exp(xt)), with t as an
inverse temperature value.

3.3 Mention and Context Encoder

We format the context words s and the mention
span m as x = [CLS] m [SEP] s [SEP] and
chunk into WordPiece tokens (Wu et al., 2016). Us-
ing pre-trained BERT5 (Devlin et al., 2019), we en-
code the whole sequence into a single vector by tak-
ing the hidden vector at the [CLS] token. A high-
way layer (Srivastava et al., 2015) projects down
the hidden vector h[CLS] ∈ Rℓ to the R2d space,
where ℓ is the hidden dimension of the encoder
(BERT), and d is the dimension of the box space.
This highway layer transforms representations in a
vector space to the box space without impeding the
gradient flow. We further split the hidden vector
h̄ ∈ R2d into two vectors: the center point of the
box cx ∈ Rd and the offset from the maximum
and minimum corners ox ∈ Rd. The minimum and
maximum corners of the mention and context box
are computed as xm = σ(cx − SOFTPLUS(ox))
and xM = σ(cx + SOFTPLUS(ox)), where σ is
an element-wise sigmoid function, and SOFTPLUS

is an element-wise softplus function as defined in
Section 3.2 ((1) in Figure 2). The output of the
softplus is guaranteed to be positive, guaranteeing
that the boxes have volume greater than zero.

3.4 Learning

The goal of training is to find a set of parameters
θ that minimizes the sum of binary cross-entropy
losses over all types over all examples in our train-

4From Dasgupta et al. (2020), the Euler-Mascheroni con-
stant appears due to the interpretation of xm,i, xM,i as the
location parameters of Gumbel distributions.

5We use BERT-large uncased (whole word masking) in
our experiments.

ing dataset D:

L = −
∑︂

(m,s,t)∈D

∑︂
k

tkgold · log pθ(tk | m, s)

+ (1− tkgold) · log(1− pθ(t
k | m, s)),

where tkgold ∈ {0, 1} is the gold label for the type
tk. We optimize this objective using gradient-based
optimization algorithms such as Adam (Kingma
and Ba, 2015).6

4 Experimental Setup

Our focus here is to shed light on the difference
between type hierarchies learned by the box-based
model and the vector-based model. To this end, we
first evaluate those two models on standard entity
typing datasets. Then, we test models’ consistency,
robustness, and calibration, and evaluate the pre-
dicted types as entity representations on a down-
stream task (coreference resolution). See Appendix
A for hyperparameters.

4.1 Baseline
Our chief comparison is between box-based and
vector-based modeling of entity types. As our main
baseline for all experiments, we use a vector-based
version of our entity typing model. We use the
same mention and context encoder followed by a
highway layer, but this baseline has vector-based
type embeddings (i.e., a |T | × d′ matrix), and type
predictions are given by a dot product between
the type embeddings and the mention and context
representation followed by element-wise logistic
regression. This model is identical to that of Onoe
and Durrett (2020b) except for the additional high-
way layer.

4.2 Evaluation and Datasets
Entity Typing We evaluate our approach on the
Ultra-Fine Entity Typing (UFET) dataset (Choi
et al., 2018) with the standard splits (2k for each
of train, dev, and test). In addition to the manually
annotated training examples, we use the denoised
distantly annotated training examples from Onoe
and Durrett (2019).7 This dataset contains 10,331
entity types, and each type is marked as one of
the three classes: coarse, fine, and ultra-fine. Note

6With large type sets, most types are highly skewed to-
wards the negative class (>99% negative for many fine-
grained types). While past work such as Choi et al. (2018) has
used modified training objectives to handle this class imbal-
ance, we did not find any modification to be necessary.

7This consists of 727k training examples derived from the
distantly labeled UFET data.
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that this classification does not provide explicit
hierarchies in the types, and all classes are treated
equally during training.

Additionally, we test our box-based model on
three other entity typing benchmarks that have rel-
atively simpler entity type inventories with known
hierarchies, namely OntoNotes (Gillick et al.,
2014), BBN (Weischedel and Brunstein, 2005) ,
and FIGER (Ling and Weld, 2012). See Appendix
B for more details on these datasets.

Consistency A model that captures hierarchical
structure should be aware of the relationships be-
tween supertypes and subtypes. When a model
predicts a subtype, we want it to predict the corre-
sponding supertype together, even when this is not
explicitly enforced as a constraint or consistently
demonstrated in the data, such as in the UFET
dataset. That is, when a model predicts artist,
person should also be predicted. To check this
ability, we analyze the model predictions on the
UFET dev set. We select 30 subtypes from the
UFET type inventory and annotate corresponding
supertypes for them in cases where these relation-
ships are clear, based on their cooccurrence in the
UFET training set and human intuition. Based on
the 30 pairs, we compute accuracy of predicting
supertypes and subtypes together. Table 10 in Ap-
pendix C lists the 30 pairs.

Robustness Entity typing datasets with very
large ontologies like UFET are noisy; does our
box-based model’s notion of hierarchy do a better
job of handling intrinsic noise in a dataset? To test
this in a controlled fashion, we synthetically create
noisy labels by randomly dropping the gold labels
with probability 1

3 .8 We derive two noisy training
sets from the UFET training set: 1) adding noise
to the coarse types and 2) adding noise to fine &
ultra-fine types. We train on these noised datasets
and evaluate on the standard UFET dev set.

Calibration Desai and Durrett (2020) study cali-
bration of pre-trained Transformers such as BERT
and RoBERTa (Liu et al., 2019) on natural language
inference, paraphrase detection, and commonsense
reasoning. In a similar manner, we investigate if
our box-based entity typing model is calibrated: do
the probabilities assigned to types by the model
match the empirical likelihoods of those types?
Since models may naturally have different scales

8If this causes the gold type set to be empty, we retain the
original gold type(s); however, this case is rare.

Model P R F1

Box 52.8 38.8 44.8
Vector 53.0 36.3 43.1

Choi et al. (2018) 47.1 24.2 32.0
Label GCN (Xiong et al., 2019) 50.3 29.2 36.9
ELMo (Onoe and Durrett, 2019) 51.5 33.0 40.2
BERT-base (Onoe and Durrett, 2019) 51.6 33.0 40.2

Table 1: Macro-averaged P/R/F1 on the test set for the
ultra-fine entity typing task of Choi et al. (2018).

for their logits depending on how long they are
trained, we post-hoc calibrate each of our models
using temperature scaling (Guo et al., 2017) and a
shift parameter. We report the total error (e.g., the
sum of the errors between the mean confidence and
the empirical accuracy) on the UFET dev set and
the OntoNotes dev set.

Entity Representations We are interested in the
usefulness of the trained entity typing models in
a downstream task. Following Onoe and Durrett
(2020b), we evaluate entity representation given
by the box-based and vector-based models on the
Coreference Arc Prediction (CAP) task (Chen et al.,
2019) derived from PreCo (Chen et al., 2018). This
task is a binary classification problem, requiring to
judge if two mention spans (either in one sentence
or two sentences) are the same entity or not. As
in Onoe and Durrett (2020b), we obtain type pre-
dictions (a vector of probabilities associated with
types) for each span and use it as an entity repre-
sentation. The final prediction of coreference for a
pair of mentions is given by the cosine similarity
between the entity type probability vectors with a
threshold 0.5. The original data split provides 8k
examples for each of the training, dev, and test sets.
We report accuracy on the CAP test set.

5 Results and Discussion

5.1 Entity Typing

Here we report entity typing performance on Ultra-
Fine Entity Typing (UFET), OntoNotes, FIGER,
and BBN. For each dataset, we select the best
model from 5 runs with different random seeds
based on the development performance.

UFET Table 1 shows the macro-precision, re-
call, and F1 scores on the UFET test set. Our box-
based model outperforms the vector-based model
and state-of-the-art systems in terms of macro-
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Total Coarse Fine Ultra-Fine

Model P R F1 P R F1 P R F1 P R F1

Box 52.9 39.1 45.0 71.2 82.5 76.4 50.9 55.2 53.0 45.4 24.5 31.9
Vector 53.3 36.7 43.5 71.7 79.9 75.6 51.9 48.5 50.2 43.7 22.7 29.8

Choi et al. (2018) 48.1 23.2 31.3 60.3 61.6 61.0 40.4 38.4 39.4 42.8 8.8 14.6
Label GCN (Xiong et al., 2019) 49.3 28.1 35.8 66.2 68.8 67.5 43.9 40.7 42.2 42.4 14.2 21.3
ELMo (Onoe and Durrett, 2019) 50.7 33.1 40.1 66.9 80.7 73.2 41.7 46.2 43.8 45.6 17.4 25.2
HY XLarge (López and Strube, 2020) 43.4 34.2 38.2 61.4 73.9 67.1 35.7 46.6 40.4 36.5 19.9 25.7

Table 2: Macro-averaged P/R/F1 on the dev set for the entity typing task of Choi et al. (2018) comparing various
systems. Our box-based model outperforms models from past work as well as our vector-based baseline.

F1.9 Compared to the vector-based model, the box-
based model improves primarily in macro-recall
compared to macro-precision. Choi et al. (2018)
is a LSTM-based model using GloVe (Pennington
et al., 2014). On top of this model, Xiong et al.
(2019) add a graph convolution layer to model type
dependencies. Onoe and Durrett (2019) use ELMo
(Peters et al., 2018) and apply denoising to fix label
inconsistency in the distantly annotated data.

Note that past work on this dataset has used
BERT-base (Onoe and Durrett, 2019). Work on
other datasets has used ELMo and observed that
BERT-based models have surprisingly underper-
formed (Lin and Ji, 2019). Some of the gain from
our vector-based model can be attributed to our
use of BERT-Large; however, our box model still
achieves stronger performance than the correspond-
ing vector-based version which uses the same pre-
trained model.

Table 2 breaks down the performance into the
coarse, fine, and ultra-fine classes. Our box-based
model consistently outperforms the vector-based
model in macro-recall and F1 across the three
classes. The largest gap in macro-recall is in the
fine class, leading to the largest gap in macro-F1
within the three classes.

We also list the numbers from prior work in
Table 2. HY XLarge (López and Strube, 2020),
a hyperbolic model designed to learn hierarchical
structure in entity types, exceeds the performance
of the models with similar sizes such as Choi et al.
(2018) and Xiong et al. (2019) especially in macro-
recall. In the ultra-fine class, both our box-based
model and HY XLarge achieve higher macro-F1
compared to their vector-based counterparts.

One possible reason for the higher recall of our

9We omit the test number of López and Strube (2020),
since they report results broken down into coarse, fine, and
ultra-fine types instead of an aggregated F1 value. However,
based on the development results, their approach substantially
underperforms the past work of Onoe and Durrett (2019) re-
gardless.

model is a stronger ability to model dependencies
between types. Instead of failing to predict a highly
correlated type, the model may be more likely to
predict a complete, coherent set of types.

Other datasets Table 3 compares macro-F1 and
micro-F1 on the OntoNotes, BBN, and FIGER
test sets.10 On OntoNotes, our box-based model
achieves better performance than the vector-based
model. Zhang et al. (2018) use document-level
information, Chen et al. (2020) apply a hierarchi-
cal ranking loss that assumes prior knowledge of
type hierarchies, and Lin and Ji (2019) propose an
ELMo-based model with an attention layer over
mention spans and train their model on the aug-
mented data from Choi et al. (2018). Among the
models trained only on the original OntoNotes
training set, the box-based model achieves the high-
est macro-F1 and micro-F1.

The state-of-the-art system on BBN, the sys-
tem of Chen et al. (2020) in the “undefined” set-
ting, uses explicit knowledge of the type hierar-
chy. This is particularly relevant on the BBN
dataset, where the training data is noisy and fea-
tures training points with obviously conflicting la-
bels like person and organization, which
appear systematically in the data. To simulate con-
straints like the ones they use, we use three simple
rules to modify our models’ prediction: (1) drop-
ping person if organization exists, (2) drop-
ping location if gpe exists, and (3) replacing
facility by fac, since both versions of this tag
appear in the training set but only fac in the dev
and test set. Our box-based model and the vector-
based model perform similarly and both achieve
results comparable with recent systems.

On FIGER, our box-based model shows lower
performance compared to the vector-based model,
though both are approaching comparable results

10Note that our hyperparameters are optimized for macro
F1 on OntoNotes.
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OntoNotes BBN FIGER

Model Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Box 77.3 70.9 78.7* 78.0* 79.4 75.0
Vector 76.2 68.9 78.3* 78.0* 81.6 77.0

Zhang et al. (2018) 72.1 66.5 75.7 75.1 78.7 75.5
Chen et al. (2020) (exclusive) 72.4 67.2 63.2 61.0 82.6 80.8
Chen et al. (2020) (undefined) 73.0 68.1 79.7 80.5 80.5 78.1
Lin and Ji (2019) 82.9† 77.3† 79.3 78.1 83.0 79.8

Table 3: Macro-averaged F1 and Micro-averaged F1 on the test set for the
entity typing task of OntoNotes, BBN, FIGER. †: Not directly comparable
since large-scale augmented data is used. *: We fix the predictions using
simple rules post-hoc.

BBN FIGER

Model Dev Ma-F1 Dev Ma-F1

Box 92.4 94.3
Vector 92.3 94.7

Table 4: Macro-averaged F1
on the dev set of BBN and
FIGER. These dev sets are
drawn from the same distribu-
tions as their training sets.

with state-of-the-art systems. We notice that
some of the test examples have inconsistent la-
bels (e.g., /organization/sports team is
present, but its supertype /organization is
missing), penalizing models that predict the super-
type correctly. In addition, FIGER, like BBN, has
systematic shifts between training and test distri-
butions. We hypothesize that our model’s hyperpa-
rameters (tuned on OntoNotes only) are suboptimal.
The high dev performance shown in Table 4 implies
that our model optimized on held-out training ex-
amples may not capture these specific shifts as well
as other models whose inductive biases are better
suited to this unusually mislabeled data.

5.2 Consistency

One factor we can investigate is whether our model
is able to predict type relations in a sensible, con-
sistent fashion independent of the ground truth for
a particular example. For this evaluation, we in-
vestigate our model’s predictions on the UFET dev
set. We count the number of occurrences for each
subtype in 30 supertype/subtype pairs (see Table 10
in Appendix C). Then, for each subtype, we count
how many times its corresponding supertype is also
predicted. Although these supertype-subtype rela-
tions are not strictly defined in the training data,
we believe they should nevertheless be exhibited
by models’ predictions. Accuracy is given by the
ratio between those counts, indicating how often
the supertype was correctly picked up.

Table 5 lists the total and per-supertype accu-
racy on the supertype/subtype pairs. We report
the number of subtypes grouped by their super-
types to show their frequency (the “Count” column
in Table 5). Our box-based model achieves bet-
ter accuracy compared to the vector-based model
on all supertypes. The gaps are particularly large
on place and organization. Note that some

of the UFET training examples have inconsistent
labels (e.g., a subtype team can be a supertype
organization or group), and this ambiguity
potentially confuses a model during training. Even
in those tricky cases, the box-based model shows
reasonable performance. The geometry of the box
space itself gives some evidence as to why this
consistency would arise (see Section 5.6 for visual-
ization of box edges).

5.3 Robustness

Table 6 analyzes models’ sensitivity to the label
noise. We list the UFET dev performance by mod-
els trained on the noised UFET training set. When
the coarse types are noised (i.e., omitting some su-
pertypes), the vector-based model loses 4.8 points
of macro-F1 while our box-based model only loses
1.5 points. A similar trend can be seen when the
fine and ultra-fine types are noised (i.e., omitting
some subtypes). In both cases, the vector-based
model shows lower recall compared to the same
model trained on the clean data, while our box-
based model is more robust. We also note that the
vector-based model tends to overfit to the training
data quickly. We hypothesize that the use of boxes
works as a form of regularization, since moving
boxes may be harder than moving points in a space,
thus being less impacted by noisy labels.

5.4 Calibration

Following Nguyen and O’Connor (2015), we split
model confidence (output probability) for each typ-
ing decision of each example into 10 bins (e.g., 0-
0.1, 0.1-0.2 etc.). For each bin, we compute mean
confidence and empirical accuracy. We show the
total calibration error (lower is better) as well as
the scaling and shifting constants in Table 7. As the
results on UFET and OntoNotes show, both box-
based and vector-based entity typing models can be
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Box Vector

Supertype Count Acc. Count Acc.

person 982 99.7 745 98.6
location 470 86.1 450 84.4
place 49 95.9 29 68.9
organization 496 84.6 407 77.8

Total 1,997 92.7 1,631 89.0

Table 5: Consistency: accuracy evaluated on the 30 su-
pertype & subtypes pairs. The “Count” column shows
the number of subtypes found in the predictions. The
accuracy is the frequency of predicting the correspond-
ing supertype when the subtype is exhibited.

Training Data Model P R F1 ∆ in F1

Noised Coarse Box 51.0 37.9 43.5 -1.5
Vector 51.5 31.0 38.7 -4.8

Noised Fine Box 53.0 37.2 43.7 -1.3
& Ultra-fine Vector 58.6 30.6 40.2 -3.3

Table 6: Entity typing results of the UFET dev set.
Models are trained on the noised UFET training set.
The “∆ in F1” column shows the performance drop
from the model trained on the original UFET training
set (not noised).

reasonably well calibrated after applying tempera-
ture scaling and shifting. However, the box-based
model achieves slightly lower total error.

5.5 Entity Representation for Coreference

This experiment evaluates if model outputs are im-
mediately useful in a downstream task. For this
task, we use the box-based and vector-based en-
tity typing models trained on the UFET training
set (i.e., we do not train models on the CAP train-
ing set). Table 8 shows the test accuracy on the
CAP data. Our box-based model achieves slightly
higher accuracy than the vector-based model, indi-
cating that “out-of-the-box” entity representations
obtained by the box-based model contains more
useful features for the CAP task.11

5.6 Box Edges

To analyze how semantically related type boxes are
located relative to one another in the box space, we
plot the edges of the person and actor boxes
along the 109 dimensions one by one. Figure 3
shows how those two boxes overlap each other in
the high-dimensional box space. The upper plot

11Our results are not directly comparable to those of Onoe
and Durrett (2020b); we train on the training set of UFET
dataset, and they train on examples from the train, dev, and
test sets.

Model Scale / Shift Total Error

UFET

Box 0.5 / -1.1 0.1119
Vector 0.2 / -1.1 0.3279

OntoNotes

Box 0.9 / -0.3 0.1358
Vector 0.7 / -0.4 0.1568

Table 7: Total calibration error
on UFET and OntroNotes. We
scale and shift logits post-hoc.

Model Test Acc.

Box 78.1
Vector 77.3
Random 50.0

Table 8: Accuracy
on the CAP test set
(Chen et al., 2019).
This is a binary
classification task.

in Figure 3 compares the person box and the
actor box learned on the UFET data. We can
see that the edges of person contain the edges of
actor in many dimensions but not all, meaning
that the person box overlaps with the actor box
but doesn’t contain it perfectly as we might expect.

However, we can additionally investigate
whether the actor box is effectively contained in
the person for parts of the space actually used by
the mention boxes. The lower plot in Figure 3 com-
pares the person box and the minimum bounding
box of the intersections between the actor and
the mention and context boxes obtained using the
UFET dev examples where the actor type is pre-
dicted. This minimum bounding box approximates
the effective region within the actor box. Now
the edges of actor are contained in the edges of
person in the most of dimensions, indicating that
the person box almost contains this “effective”
actor box.

6 Related Work

Embeddings Embedding concepts/words into a
high-dimensional vector space (Hinton, 1986) has
a long history and has been an essential part of
neural networks for language (Bengio et al., 2003;
Collobert et al., 2011). There is similarly a long
history of rethinking the semantics of these em-
bedding spaces, such as treating words as regions
using sparse count-based vectors (Erk, 2009a,b) or
dense distributed vectors (Vilnis and McCallum,
2015). Order embeddings (Vendrov et al., 2016) or
their probabilistic version (POE) (Lai and Hocken-
maier, 2017) are one technique suited for hierarchi-
cal modeling. However, OE can only handle binary
entailment decisions, and POE cannot model nega-
tive correlations between types, a critical limitation
in its use as a probabilistic model; these shortcom-
ings directly led to the development of box embed-
dings. Hyperbolic embeddings (Nickel and Kiela,
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(a)

(b)

Figure 3: Edges of (a) the person box vs the actor box and (b) the person box vs the minimum bounding
box of the intersections between mention & context boxes and the actor box.

2017; López and Strube, 2020) can also model
hierarchical relationships as can hyperbolic entail-
ment cones (Ganea et al., 2018); however, these
approaches lack a probabilistic interpretation.

Recent work on knowledge base completion
(Abboud et al., 2020) and reasoning over knowl-
edge graphs (Ren et al., 2020) embeds relations
or queries using box embeddings, but entities are
still represented as vectors. In contrast, our model
embed both entity mentions and types as boxes.

Entity typing Entity typing and named entity
recognition (Tjong Kim Sang and De Meulder,
2003) are old problems in NLP. Recent work has fo-
cused chiefly on predicted fine-grained entity types
(Ling and Weld, 2012; Gillick et al., 2014; Choi
et al., 2018), as these convey significantly more in-
formation for downstream tasks. As a result, there
is a challenge of scaling to large type inventories,
which has inspired work on type embeddings (Ren
et al., 2016a,b).

Entity typing information has been used across
a range of NLP tasks, including models for entity
linking and coreference (Durrett and Klein, 2014).
Typing has been shown to be useful for cross-
domain entity linking specifically (Gupta et al.,
2017; Onoe and Durrett, 2020a). It has also re-
cently been applied to coreference resolution (Onoe
and Durrett, 2020b; Khosla and Rose, 2020) and
text generation (Dong et al., 2020), suggesting that
it can be a useful intermediate layer even in pre-
trained neural models.

7 Conclusion

In this paper, we investigated a box-based model
for fine-grained entity typing. By representing en-
tity types in a box embedding space and project-
ing entity mentions into the same space, we can
naturally capture the hierarchy of and correlations
between entity types. Our experiments showed sev-
eral benefits of box embeddings over the equivalent
vector-based model, including typing performance,
calibration, and robustness to noise.
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Appendix A: Hyperparameter Search

We use Bayesian hyperparameter tuning and the
Hyperband stopping criteria (Li et al., 2017) imple-
mented in the Weights & Biases software (Biewald,
2020). We use Adam (Kingma and Ba, 2015) for all
experiments. We perform hyperparameter search
on OntoNotes due to its fast convergence. This
finds a lower dimension for the box-based model
compared to the vector-based model (109-d × 2
vs 307-d), resulting fewer parameters in the box-
based model. When we train the box-based model
on the UFET dataset, we sample 1,000 negatives
(i.e., wrong types) to speed up convergence; this is
not effective in the vector-based model, so we do
not do this there.

We use the same hyperparameters for the other
three datasets. We train all models using NVIDIA
V100 GPU with batch size 128. We implement our
models using HuggingFace’s Transformers library
(Wolf et al., 2020).

Table 9 shows hyperparameters of the box-based
and vector-based models as well as their ranges
to search. For Adam, we use β1 = 0.9 and β2 =
0.999 for training.

Model Hyperparameter Range Selected

Box

Batch Size {16, 32, 64, 128} 128
lr (BERT) - 2e-5
lr (Other) [0.0001, 0.01] 0.00372
Box Dimension [50, 250] 109
Gumbel Temp. [0.0001, 0.01]* 0.00036
Softplus Temp.† [0.1, 10]* 1.2471

Vector

Batch size {16, 32, 64, 128} 128
lr (BERT) - 2e-5
lr (Other) [0.0001, 0.01] 0.00539
Vector Dimension [100, 500] 307

Table 9: Hyperparameters and their ranges. *: we use
a log uniform distribution. †: Pytorch implementation
of a softplus function takes inverse β.

Appendix B: Entity Typing Benchmarks

OntoNotes (Gillick et al., 2014) has
89 types with a 3-level hierarchy (e.g.,
/location/geography/mountain).
We use the same splits (250k train / 2k dev / 9k
test) provided by (Shimaoka et al., 2017). FIGER
(Ling and Weld, 2012), derived from Wikipedia,
uses 113 types with a 2-level hierarchy (e.g.,
/person/musician). We use the same splits
(2M train / 10k dev / 563 test) as (Shimaoka et al.,
2017). BBN (Weischedel and Brunstein, 2005)
is based on the one million word Penn Treebank

corpus from Wall Street Journal articles. We use
the same splits (84k train / 2k dev / 14k test) as
Ren et al. (2016b); Chen et al. (2020).

Appendix C: Supertype/subtype pairs

Table 10 shows the supertype/subtype pairs we
manually annotated for our consistency test.

Supertype Subtype

person politician
person athlete
person leader
person official
person spokesperson
person musician
person actor
person professional
person male
person female

location country
location city
location area
location region
location position
location space
location district
location territory
place structure
place building

organization company
organization institution
organization government
organization agency
organization team
organization administration
organization military
organization association
organization social group
organization committee

Table 10: 30 supertype and subtype pairs used for the
consistency test.

Appendix D: Box Edges

Similar to Figure 3, we plot the semantically unre-
lated type boxes food and building in Figure 4.
These boxes are largely misaligned as expected,
and the minimum bounding box of the intersec-
tions between the building and the mention and
context boxes is also off from the food box.

Appendix E: Reliability Plot

Figure 5 visualizes the alignment between confi-
dence and empirical accuracy on the UFET and
OntoNotes dev sets.
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(a)

(b)

Figure 4: Edges of (a) the food box vs the building box and (b) the food box vs the minimum bounding box
of the intersections between mention & context boxes and the building box.

(a) UFET (b) OntoNotes

Figure 5: Reliability Plots on (a) UFET and (b) OntoNotes.


