@inproceedings{luu-etal-2021-explaining,
title = "Explaining Relationships Between Scientific Documents",
author = "Luu, Kelvin and
Wu, Xinyi and
Koncel-Kedziorski, Rik and
Lo, Kyle and
Cachola, Isabel and
Smith, Noah A.",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.166",
doi = "10.18653/v1/2021.acl-long.166",
pages = "2130--2144",
abstract = "We address the task of explaining relationships between two scientific documents using natural language text. This task requires modeling the complex content of long technical documents, deducing a relationship between these documents, and expressing the details of that relationship in text. In addition to the theoretical interest of this task, successful solutions can help improve researcher efficiency in search and review. In this paper we establish a dataset of 622K examples from 154K documents. We pretrain a large language model to serve as the foundation for autoregressive approaches to the task. We explore the impact of taking different views on the two documents, including the use of dense representations extracted with scientific IE systems. We provide extensive automatic and human evaluations which show the promise of such models, but make clear challenges for future work.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luu-etal-2021-explaining">
<titleInfo>
<title>Explaining Relationships Between Scientific Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kelvin</namePart>
<namePart type="family">Luu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyi</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rik</namePart>
<namePart type="family">Koncel-Kedziorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Lo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Cachola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address the task of explaining relationships between two scientific documents using natural language text. This task requires modeling the complex content of long technical documents, deducing a relationship between these documents, and expressing the details of that relationship in text. In addition to the theoretical interest of this task, successful solutions can help improve researcher efficiency in search and review. In this paper we establish a dataset of 622K examples from 154K documents. We pretrain a large language model to serve as the foundation for autoregressive approaches to the task. We explore the impact of taking different views on the two documents, including the use of dense representations extracted with scientific IE systems. We provide extensive automatic and human evaluations which show the promise of such models, but make clear challenges for future work.</abstract>
<identifier type="citekey">luu-etal-2021-explaining</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.166</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.166</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>2130</start>
<end>2144</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explaining Relationships Between Scientific Documents
%A Luu, Kelvin
%A Wu, Xinyi
%A Koncel-Kedziorski, Rik
%A Lo, Kyle
%A Cachola, Isabel
%A Smith, Noah A.
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F luu-etal-2021-explaining
%X We address the task of explaining relationships between two scientific documents using natural language text. This task requires modeling the complex content of long technical documents, deducing a relationship between these documents, and expressing the details of that relationship in text. In addition to the theoretical interest of this task, successful solutions can help improve researcher efficiency in search and review. In this paper we establish a dataset of 622K examples from 154K documents. We pretrain a large language model to serve as the foundation for autoregressive approaches to the task. We explore the impact of taking different views on the two documents, including the use of dense representations extracted with scientific IE systems. We provide extensive automatic and human evaluations which show the promise of such models, but make clear challenges for future work.
%R 10.18653/v1/2021.acl-long.166
%U https://aclanthology.org/2021.acl-long.166
%U https://doi.org/10.18653/v1/2021.acl-long.166
%P 2130-2144
Markdown (Informal)
[Explaining Relationships Between Scientific Documents](https://aclanthology.org/2021.acl-long.166) (Luu et al., ACL-IJCNLP 2021)
ACL
- Kelvin Luu, Xinyi Wu, Rik Koncel-Kedziorski, Kyle Lo, Isabel Cachola, and Noah A. Smith. 2021. Explaining Relationships Between Scientific Documents. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 2130–2144, Online. Association for Computational Linguistics.