








strict to find acceptable supporters. Therefore, we
reformulate Eq.(2) into a soft version:

X
s(AQ) 2 w(S|A)PLu(SIQ), &)
S2 A

where the indicator function in Eq.(2) is replaced
by a soft function w(S|A). To emulate I(S € S4),
w(S|A) is expected to meet three requirements: (1)
w(S|A) € [0,1] for any S and A; (2) w(S|A) =1
if cos(hg,ha) = 1; (3) w(S|A) increases mono-
tonically with cos(hg, ha). There are several dif-
ferent definitions of w(.S|A) meeting these require-
ments, which are explored in Section 4.7.3. In this
paper, w(S|A) is defined as:

1 cos(hg, ha)

w(S|A) = mexp T

(&)
T is the temperature, and Z(T') = exp(#%) is a nor-
malization term that makes w(A|A) = 1. If T" — 0,
w(S|A) degenerates to the indicator function. If
T > 0, w(S|A) relates to the von Mises-Fishers
distribution over the unit sphere in the feature space,
where the acceptable feature vectors are distributed
around the mean direction i ZA--

Since it is intractable to enumerate all possible
answers in A, we convert Eq.(4) to an expectation

over Pry(S]Q):
s(AlQ) =Es ppysiQ) w(S[A)]

~ S w(Si4) (©)
=1
= T ;(T) éexp 7cos(h;f7hA)} , (D
where S1,---, Sk are sentences sampled from

Pra(+|Q), and K is the sample size. h4 and hg,
can be extracted from a pre-trained model, e.g.,
SentenceBERT (Reimers and Gurevych, 2019).
From Eq.(7), we can see the semantic score
s(A|Q) is only dependent on the semantic feature
h 4 and regardless of A’s surface form. Therefore,
our method will produce similar semantic scores
for synonymous choices, assuming that the synony-
mous choices have similar semantic features.

3.3 The Voting View of SEQA

At the beginning of Section 3.2, we define the se-
mantic score as the summation of the conditional
probabilities over the supporters. However, in
Eq.(7), the sampled sentences Sy, - - - , Sk are not
A’s supporters because they may not be semanti-
cally similar to A. To address the differences, we

Q: I saw my breath when I exhaled.
What was the cause of this?

A: The weather was warm.

A,: The weather was chilly.
Rewrite: I saw my breath when [

exhaled because Feature Extractor

Language Model l (SRoBERTa)
(GPT-2)
S,: It was cold. ha,
Voters - S,: Of the coldness of the air. Ry,
S;: I was tense. l

Feature Extractor

(SRoBERTa) hs,  0.003 0.839
hs, Vote hs, 0001 0.536
hs, ——————> ks, 0003 0019
hg, s(AlQ)  0.002 0.465

Figure 2: Process of SEQA in the view of voting. We
use the same templates with previous work (Shwartz
et al., 2020; Tamborrino et al., 2020) to rewrite inter-
rogative sentences into declarative ones. And then use
GPT-2 to generate some plausible answers as voters S;,
conditioned on the rewritten question. The choices and
voters are encoded via SentenceRoBERTa to obtain se-
mantic features, h A; and hg,, which are then used to
calculate the voting weights w(.S;|A;). The choice with
the largest score s(A;|Q) is selected as the answer.

name the sampled sentences S1,--- , Sk as vot-
ers, which are plausible answers to the question
Q. In this section, we will show another view of
our method, which works like a procedure that the
voters vote out the correct choice.

Suppose there are two candidate choices A
and Ay, our method is to find the correct choice
according to the semantic scores, s(A1|@) and
s(A2|Q). Following Eq.(6), our method can be
decomposed into two steps: First, sample some
voters S1,- -+ , Sk from Pp;(-|@Q). This step only
considers the question () but no candidate choices.
Second, each voter votes for the choices with the
semantic similarity weights. For example, S; votes
for A; with the weight of w(S;|A;). The candidate
choice that receives more votes will have a higher
semantic score and be selected as the final answer.

Figure 2 shows the process of SEQA in the view
of voting. Although the voting view is intuitive, the
formalism in Section 3.2 provides more insights:
(1) Our method approximates the probability of
semantics, which works as the theoretical basis of
SEQA. (2) Our method can be seen as an extension
of Pro-A (see Table 1), since Pro-A only calculates
the language model score for a single sentence,
whereas our method calculates the semantic score
for a set of supporters. (3) Eq.(4) provides guid-
ance, the three requirements mention before, for
the design of the voting weight function w(S|A).
Specifically, the guidance explains the rationality
of the formulation of Eq.(5).
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Dataset Method Pre-trained Original After-Attack  Attack Percentage of Semantic
; Models Accuracy (1)  Accuracy (1)  Success Rate ()  Perturbed Words  Similarity
Pro-A GPT-2 73.6 4.6 93.8 17.3 0.883
Pro-Q RoBERTa 79.4 23.0 71.0 229 0.828
COPA MI-QA  GPT-=2 74.6 16.2 78.3 19.9 0.865
Self-talk COMET+GPT-2 68.6 8.4 87.8 19.8 0.855
CGA GPT-2 72.2 4.8 93.4 17.1 0.886
SEQA GPT-2+SRoBERTa 794 59.0 25.7 21.7 0.827
Pro-A GPT-2 72.3 4.8 93.3 14.3 0917
Pro-Q RoBERTa 56.3 22.3 60.3 18.1 0.872
SCT MI-QA  GPT=2 66.1 29.2 55.8 16.2 0.885
Self-talk COMET+GPT-2 70.4 4.7 93.3 14.2 0.915
CGA GPT-2 71.5 4.8 932 14.3 0.916
SEQA GPT-2+SRoBERTa 83.2 69.4 16.5 18.3 0.856
Pro-A GPT-2 46.0 16.2 64.7 21.0 0.876
Pro-Q RoBERTa 42.2 27.8 342 23.2 0.843
SociallQA MI-QA  GPT2 41.2 24.6 40.4 253 0.866
Self-talk COMET+GPT-2 47.5 12.3 74.0 222 0.872
CGA COMET 454 18.4 59.4 223 0.867
SEQA GPT-2+SRoBERTa 47.5 38.2 19.5 23.5 0.839
Pro-A GPT-2 36.8 1.3 96.4 9.2 0.927
Pro-Q RoBERTa 21.5 5.0 76.6 13.7 0.859
CosmosQA MI-QA  GPT-=2 29.3 7.4 74.8 12.1 0.886
) Self-talk COMET+GPT-2 36.1 1.2 96.7 8.9 0.928
CGA GPT-2 424 1.7 96.0 9.6 0.924
SEQA GPT-2+SRoBERTa 56.1 32.6 41.8 13.9 0.859

Table 2: Evaluation results, including the original selection accuracy before attack, the accuracy after attack, the
attack success rate, the percentage of perturbed words with respect to the original sentence length in successful at-
tacks, and the semantic similarity between the original and paraphrased choices. GPT-2, RoOBERTa and SRoBERTa
refer to GPT-2-xlarge, RoOBERTa-large (Liu et al., 2019) and SentenceRoBERTa-large, respectively.

4 Experiments

4.1 Datasets

We conducted experiments on four multiple-
choice commonsense question answering tasks,
COPA (Roemmele et al., 2011), StoryClozeTest
(SCT) (Mostafazadeh et al., 2016), SocialIQA (Sap
et al., 2019b) and CosmosQA (Huang et al., 2019).
For each instance, only one choice is correct. See
Appendix for more description about datasets.

For COPA, we reported the results on its test
set. As the test sets of another three datasets are
hidden, for convenience of analysis, we reported
the experiment results on their development sets.

4.2 Baselines

We employed five strong baselines. Table 1 shows
three of them, Pro-A, Pro-Q and MI-QA. There is
no explicit auxiliary information used in these three
methods, while another two baselines rely on ex-
plicit information supplementation. CGA (Bosse-
lut and Choi, 2019) and Self-Talk (Shwartz et al.,
2020) query pre-trained language models (e.g.,
GPT-2, COMET (Bosselut et al., 2019)) for rele-
vant knowledge, which forms part of contexts. And
then, similar to Pro-A, they take the generative
probabilities of choices as scores.

4.3 Experiment Settings

For each method, we tried different pre-trained lan-
guage models (see Appendix for details), and then
selected the pre-trained LMs that maximized the ac-
curacy on each dataset. The details of the selection
of pre-trained LMs can be found in Table 2.

For SEQA, we used GPT-2 to generate voters
via Nucleus Sampling (Holtzman et al., 2020) with
p = 0.9. The sample size K of voters is set to 500.
In Section 4.7.2, we show that a small sample size
can also lead to superior performance. Self-Talk
and CGA also rely on the generated answers from
GPT-2 or COMET. Different from SEQA, for these
two baselines, more generated answers will not al-
ways lead to better performance (see Section 4.7.2).
Thus, we selected the optimal sample size for them
rather than the same sample size with SEQA.

When evaluating SEQA on COPA, we tuned the
temperature 7' on its development set, and then
reported the results on the test set with the tuned
temperature 7' = 0.1. Due to the absence of test
sets of other datasets, we evaluated SEQA on their
development sets without tuning the temperature
and directly set 7' = 0.1.

4.4 Main Results

Table 2 shows the evaluation results about accuracy
and robustness.
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4.4.1 Accuracy

Among all the methods, SEQA achieved the best
performance on all the datasets. Especially on SCT
and CosmosQA, SEQA outperformed the best base-
lines by more than 10 points. It can be inferred that
the semantic scores are beneficial for commonsense
question answering due to the reduction of dis-
tracting factors. Pro-Q performed better than other
baselines on COPA, perhaps because it suffered
less from the statistic bias of choices (Tamborrino
et al., 2020). However, Pro-Q lost its superiority
on another three datasets, because it is unsuitable
for processing long or complex contexts.

4.4.2 Robustness

To test the robustness under the synonym replace-
ment attack, we used TextFooler (Jin et al., 2020)
to attack the methods by perturbing the correct
choices of the correctly predicted examples. The
percentage of perturbed words refers to what per-
centage of words in choices are replaced in success-
ful attacks. The semantic similarity is measured
between the paraphrased choice and the original
choice. Considering the attack success rate and the
after-attack accuracy, SEQA is much more robust
than all baselines. To be specific, the attack success
rates on SEQA are at least 39 points lower than
those of Pro-A, CGA, and Self-Talk on all datasets.
MI-QA and Pro-Q are designed to reduce the im-
pact of statistic bias in choices, so that they can
resist lexical perturbation to some extent. Even so,
SEQA is remarkably lower than MI-QA and Pro-Q
in terms of attack success rates on all datasets.

An observation is that the attack success rate
on SEQA on CosmosQA is higher than those on
the other datasets. The reason is that, the contexts
in CosmosQA are so complex that GPT-2 is more
difficult to generate high-quality answers. If there
is a more powerful generator, the robustness of
SEQA is expected to have a further improvement.

4.5 Consistency Testing

We have claimed that a commonsense question
answering method should assign close scores to
synonymous choices. To verify that SEQA better
meets this requirement, we conducted consistency
testing for all the methods on four datasets. For
each example, the consistency testing of a method
is conducted in three steps: (1) Originally, the ex-
ample has one correct and several wrong answer
choices. We randomly sample some choices from
other examples as additional wrong choices. After

Method / Dataset COPA  SCT  SociallQA  CosmosQA
Pro-A 9.1 11.0 11.7 9.4
Pro-Q 6.9 8.5 11.6 12.3
MI-QA 7.5 5.8 11.1 7.9
Self-Talk 13.3 9.5 10.7 10.1
CGA 9.7 11.0 10.9 9.5
SEQA 4.1 3.2 5.8 4.7

Table 3: Consistency testing where the methods rank
80 choices to find 4 correct ones for each example. The
metric is the standard deviation of the ranks of 4 correct
synonymous choices averaged over 500 examples.

that, the example will have one correct choice and
19 wrong choices. (2) Leverage a commonly used
automatic translation service, Baidu Translation, to
translate each choice from English into an interme-
diate language, and then back-translate it into En-
glish. During this process, we employ three inter-
mediate languages, Chinese, Spanish, and Russian,
because the translation quality of these languages
is better than others. As a result, each choice is
accompanied with three synonymous choices. (3)
Use the commonsense question answering method
to calculate the scores for each choice as well as its
synonymous choices, and then sort all the choices
according to their scores. Because the scoring
scales of these methods are different, we calculate
the standard deviation of the ranks of the correct
choice and its synonymous choices.

Table 3 shows the average standard deviation
of the ranks. As expected, the average standard
deviation of SEQA is much lower than any other
method on all the datasets, confirming that SEQA
assigns more similar ranks and closer scores to
synonymous choices. We also observed that MI-
QA provided relatively stable predictions compared
with other baseline methods. A possible explana-
tion is that, the normalization term Py 7(A) helps
alleviate the influence of lexical perturbations.

4.6 Trends of Accuracy with Answer Length

Answer length is also a type of distracting factor
which may mislead baseline methods. To explore
to which extent answer lengths affect the perfor-
mance of methods, we divided the development set
of CosmosQA into four subsets according to the
length of correct choice. Table 4 shows the results
of SEQA and a robust baseline, MI-QA. Compared
with MI-QA, SEQA has much more stable perfor-
mance as answer lengths vary. The reason is that,
SEQA focuses on semantic information so that it
has stronger resistance to such distracting factors.
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Answer Length

Method 1y 51 (6101 [11.15] [16.20]
MI-QA 293 516 279 244 238
SEQA 56.1 586 580 541 512

Table 4: The trends of accuracy with answer length for
SEQA and MI-QA on CosmosQA.

COPA SCT SociallQA CosmosQA
Bef Aft Bef Aft Bef Aft Bef  Aft
10 75.6 488 82.0 647 463 359 527 223
1 764 488 824 645 466 36.1 533 224
0.2 770 528 83.6 663 469 368 548 26.1
0.1 794 590 832 694 475 382 56.1 32.6
005 802 546 80.8 614 460 365 551 28.8

Table 5: The before-attack (Bef) and after-attack (Aft)
accuracy of SEQA with different temperatures.

4.7 Ablation Study

4.7.1 Analysis on Temperature

In the previous experiments, the temperature 1" of
SEQA was set to 0.1 by default. To investigate
the influence of T', we varied 7" in a wide range
from 0.05 to 10 and report the results in Table 5.
Considering that the temperature varied greatly,
the performance of SEQA is relatively stable, in-
dicating that SEQA is not so sensitive to the selec-
tion of 7. Another observation is that, although
the four datasets are different in domains and text
length, the trends of performance with temperature
on them are relatively similar, illustrating that the
temperature selected on one task can be generalized
to other tasks.

4.7.2 Analysis on Sample Size

Figure 3 shows the effect of the sample size K on
SEQA. For comparison, Figure 3 also includes the
results of baselines in the settings of before- and
after-attack, respectively. Due to the limitation of
space, the results on the other datasets are shown in
Appendix. As expected, the before-attack and after-
attack accuracy on SCT increased with the sample
size. In detail, the rapid increase in performance
occurred when K < 100, and then the improve-
ment slowed down when K > 100. Finally, SEQA
achieved a stable and relatively high performance.

CGA and Self-Talk also leverage LMs to gen-
erate some plausible answers. Different from our
method, they use the generated answers to form
part of the question, and then calculate the gener-
ative probability of the choice based on the aug-
mented question. We also tried different sample
sizes for the two methods, and Figure 3 (a) shows

o
g

g

—®— SEQA
=== MI-QA
- ProQ

—e— SEQA 70
-==- MI-QA
80 ---- Pro-Q
Pro-A
—8— CGA
7 Self-Talk

8

Before-attack Accuracy
3
After-attack Accuracy

8

55 20
1 5 10 20 50 100 200 300 500 1

Sample Size

(a) (b)

5 10 20 50 100 200 300 500
Sample Size

Figure 3: The before-attack (a) and after-attack accu-
racy (b) of methods with different sample sizes on SCT.
The after-attack accuracy of Pro-A, CGA and Self-Talk
is below 5.0%, and thus omitted in (b).

w(S|A) = ﬁf (cos(hs,ha)) Bef  Aft
fl@)=1I(z > a) 772 472
f(z) = ReLU(z — B) 77.6 452
f(x) = sigmoid (%) 75.6 48.6
f(z) =exp (%) 794 59.0

Table 6: The before-attack (Bef) and after-attack (Aft)
accuracy of SEQA on the test set of COPA with differ-
ent definitions of w(S|A). «, 8, T1, T, are hyperparam-
eters tuned on the development set of COPA.

that their accuracy will not stably increase with a
larger sample size.

4.7.3 Analysis on w(S|A)

w(S]A) in SEQA can be defined in different forms,
as long as the three requirements mentioned in Sec-
tion 3.2 are met. Besides the default definition, we
explored another three forms of w(S|A), and the
experiment results on COPA are shown in Table 6.
Although the performance varies with w(S|A), the
before-attack accuracy of SEQA still outperformed
most of the baselines with any definition of w(S|A).
Moreover, SEQA maintains its obvious advantage
in after-attack accuracy, which reflects the inherent
robustness of SEQA.

GPT-2
medium large xlarge
Avg. GloVe 56.6 59.6 612
SBERT-base 71.2 726 748
SRoBERTa-base 72.4 720 754
SRoBERTa-large 74.2 75.2 79.4

Table 7: SEQA’s accuracy with different feature ex-
tractors and language models on COPA. Avg. GloVe
means the average pooling of the pre-trained word em-
beddings (Pennington et al., 2014) over the sentence.

3043



Score 3 2 1
Grammar 84.8% 12.8% 2.4%
Logic 40.8% 25.6% 33.6%

Table 8: Manual evaluation of the quality of voters
(generated by GPT-2-xlarge conditioned on questions).
Score 3/2/1 correspond to high, middle and low quality,
respectively, in terms of grammar and logicality.

4.7.4 Analysis on Pre-trained Language
Model and Feature Extractor

SEQA has no limit on the selection of the pre-
trained language model and the feature extractor.
Table 7 shows how the accuracy of SEQA on COPA
varied with the language model and the feature ex-
tractor. As expected, more powerful extractor usu-
ally led to higher accuracy under the same settings
of language models. Similar conclusion can be ob-
tained for the language model. It can be inferred
that, if there are more powerful language models
or feature extractors in the future, the performance
of SEQA may be further improved.

4.8 Analysis on the Quality of Voters

While the performance of SEQA served as an ex-
trinsic evaluation for the quality of the voters (plau-
sible answers sampled from Pr,p/(-|Q), described
in Section 3.3), we were also interested in eval-
uating it intrinsically. We sampled 125 voters
from COPA. For each voter, we provided crowd-
sourcing workers with the original question, and
asked them: 1) whether the voter is grammati-
cal, not entirely grammatical but understandable,
or completely not understandable, 2) whether the
voter is a reasonable answer to the question, not
reasonable but relevant, or completely irrelevant.
These evaluation tasks comprehensively examined
the voters in grammar and logicality. The annota-
tion tasks were carried out in Amazon Mechanical
Turk, and we aggregated annotations from 3 work-
ers using majority vote.

Table 8 shows the results of the human evalua-
tion of the voters. Score 3/2/1 correspond to the
high, middle and low quality, respectively. Accord-
ing to the grammar scores, 97.6% of the voters are
grammatical or at least understandable, for which
most of the voters belong to the natural language
space. In terms of logicality, 40.8% of the voters
are reasonable answers to the questions, which may
not be very satisfying. However, in Section 4.9, we
will show that SEQA makes prediction based on
a small part of voters, and hence SEQA is robust

0 ——  Voters that Favor Correct Answer (S|4¢) > w(S]Ay)
——  Voters that Favor Wrong Answer w(S|4y) > w(S|A¢)

Cumulative Proportion of Voters p%

0.00 0.05 0.10 0.15 0.20 025 0.30
Difference of Voting Weights § = |w(S|A¢) — w(S|Aw)|

Figure 4: The cumulative proportion of voters favor-
ing the correct answer A¢c or the wrong answer Ay
on COPA. Each point (4, p) means that p% of voters
satisfy |w(S|A¢) — w(S|Aw)| > J, where S refers to
a voter. The area between the two curves equals to the
difference of the semantic scores s(A¢|Q)—s(Aw|Q).

even though there are some irrelevant voters.

4.9 Voting Weight Distribution

We visualize the cumulative proportion of voters
favoring the correct or the wrong choices (see Fig-
ure 4). The curve is averaged over all instances in
the test set of COPA, where we sampled 500 voters
for each instance and set 7' = 0.1.

From the curves, we can find several prop-
erties of voters: (1) The voters favor the cor-
rect choices over the wrong choices, where the
curve for correct choices is consistently above the
curve for wrong ones. The area between two
curves shows the difference of semantic scores
s(Ac|Q) — s(Aw|Q), which is a large gap com-
pared with the area under the bottom curve. (2)
93.5% of voters do not strongly favor any choices
(lw(S|Ac) — w(S|Aw)| < 0.05), indicating that
they are semantically irrelevant to both candidate
choices. However, Table 8 shows that 40.8% of
voters are logically reasonable, so many voters are
reasonable but irrelevant to both answers. It sug-
gests that there can be several reasonable answers
for a single question, and the sampled voters are
diverse in the semantics. (3) Although there are
only 5.3% of voters strongly favoring the correct
choices, there are much less voters (1.2%) favoring
the wrong ones. It explains why our method is able
to predict the correct answer.

To help understand the relationship between vot-
ers and choices, Table 9 provides an instance with
voters and their voting weights to the choices. We
show four types of vorers: favoring the correct
choice, favoring the wrong choice, logically rea-
sonable but not favoring either choices, and unrea-
sonable and irrelevant to both choices. We can see
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Q: The car ran out of gas. What happened as a result?
Ac: The driver was stranded on the road. (v')
Aw: The driver picked up a hitchhiker. (X)

w(Si|Ac) voter w(Si|Aw)
0.161 I'had to park on a dead end road. 0.008
0.008 We picked up a hitchhiker and 0.137
she drove us to the diner.
0.013 We stopped at a gas station. 0.011
0.018 It was time to hit the road again. 0.010

Table 9: An example of voters as well as their voting
weights. Ac is the correct choice, while Ay is wrong.
S; refers to a voter.

that the last two types of voters can hardly affect the
method’s prediction, because their voting weights
are much smaller than the first two types of voters.

5 Conclusion

We present a semantic-based question answering
method, SEQA, which can answer commonsense
questions more accurately and robustly in an unsu-
pervised setting. Instead of directly scoring each
answer choice, our method focuses on the prob-
ability of observing a choice’s semantics. In the
view of voting, SEQA first generates some plausi-
ble answers (voters) and then utilizes them to vote
for the correct choice by considering the seman-
tic similarity between each choice and each voter.
Experiment results show that SEQA achieves the
best performance on four datasets, and it is remark-
ably more robust than all the baselines when being
attacked by TextFooler.
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Dataset COPA-dev  COPA-test SCT-dev SociallQA-dev  CosmosQA-dev
Number of Examples 500 500 1571 1954 2726
Number of Choices 2 2 2 3 3/4
Question Length (mean, std) (7.3, 1.8) (7.1,1.7)  (35.3,6.5) (15.3,4.4) (83.0,24.5)
Choice Length (mean, std) (5.1, 1.6) (5.0, 1.5) (7.4,2.5) (3.7,2.3) (10.0, 4.3)

Table 10: Statistic information of each dataset. Due to the removal of the choice “None of the above”, each instance

of CosmosQA may have 3 or 4 answer choices.

A Datasets

The four datasets used in this work are multiple-
choice commonsense question answering tasks.

COPA? (Roemmele et al., 2011) evaluates the
ability of causal reasoning about a certain event,
which is expressed in a simple sentence. Each ques-
tion is accompanied with two candidate choices.

StoryClozeTest (SCT)? (Mostafazadeh et al.,
2016) requires models to select the reasonable story
ending, from two alternatives, conditioned on a de-
scription about the story context.

SociallQA* (Sap et al., 2019b) evaluates the rea-
soning ability on social events. In each example,
the question describes a social event and asks mod-
els to make some inferences based on the event,
such as its cause or effect.

CosmosQA° (Huang et al., 2019) is a read-
ing comprehension task. Different from the three
datasets above, the examples of CosmosQA have
long and complex contexts. The original dataset
contains a type of choices “None of the above”
to test whether models can identify unanswerable
questions. This is not the focus of our work, so we
removed such choices.

For COPA, we reported the results on its test
set. As the test sets of SCT, SociallQA and Cos-
mosQA are hidden, for convenience of analysis,
we reported the experiment results on their devel-
opment sets. See Table 10 for statistic information
of each dataset.

B Templates for Rewriting Questions

We use the same templates for our method and all
the baselines. Note that the templates for rewriting
questions is not the focus of this paper, and we in-
herit the templates from previous work if available.

“https://people.ict.usc.edu/ gordon/copa.html

3https://www.cs.rochester.edu/nlp/rocstories/

*https://leaderboard.allenai.org/socialiga/submissions/get-
started

Shttps://leaderboard.allenai.org/cosmosqa/submissions/get-
started

Tamborrino et al. (2020) provides templates for
COPA (Table 11) and Shwartz et al. (2020) pro-
vides templates for SociallQA (Table 12). Since
the instances in SCT have no questions, SCT does
not need templates. There is no related work dis-
cussing templates for CosmosQA, so we design
some templates by ourselves (Table 13). Source
code for rewriting questions and SEQA will be
made publicly available.

C Selection of Pre-trained Models

For each method, we tried to adopt different pre-
trained models and find the pre-trained models that
maximized the accuracy on the development set of
each dataset. Table 14 shows the set of candidate
pre-trained models for each method, with the se-
lected models in bold. Because of the nature of Pro-
Q, it can only use bidirectional language models,
so we only evaluated Pro-Q with RoBERTa-large
and SentenceRoBERTa-large.

As shown in Table 14, for each method except
CGA, the best selection of pre-trained models is
consistent on all the datasets. CGA achieved its
best performance with COMET on SociallQA and
with GPT2-xlarge on the other datasets.

D Hyperparameter Search

For SEQA, we only tuned the temperature I'. To be
more specific, we selected 7" from five candidate
values according to the accuracy on the develop-
ment set of COPA. Table 15 shows that SEQA with
T = 0.1 achieved the best performance on the de-
velopment set of COPA. And then we evaluated
SEQA with T' = 0.1 on the test set of COPA as
well as the development sets of SCT, SociallQA
and CosmosQA.

E Analysis on Sample Size

Figure 5,6,7 shows the effect of the sample size
K on SEQA. For comparison, these figures also
include the results of baselines in the settings of
before- and after-attack, respectively. On the over-
all trend, the performance of SEQA improved as

3047


https://people.ict.usc.edu/~gordon/copa.html
https://www.cs.rochester.edu/nlp/rocstories/
https://leaderboard.allenai.org/socialiqa/submissions/get-started
https://leaderboard.allenai.org/cosmosqa/submissions/get-started

Original Question

Rewrite

What was the cause of this? because
What happened as a result? SO
Original Example Rewrite

I saw my breath when I exhaled. What was
the cause of this? The weather was chilly.

I saw my breath when I exhaled because the
weather was chilly.

Table 11: Templates and a rewritten example of COPA. The templates are inherited from Tamborrino et al. (2020).

Original Question Rewrite 1 Rewrite 2
What will [SUBJ] want to do next? As a result, [SUBJ] wanted to <xwant>
How would [SUBJ] feel as a result? As a result, [SUBJ] felt <xeffect>
What will [SUBIJ] do next? [SUBIJ] then <Xxreact>
How would you describe [SUBJ]? [SUBIJ] is seen as <xattr>
Why did [SUBIJ] do that? Before, [SUBJ] wanted <xintent>
What does [SUBJ] need to do before?  Before, [SUBJ] needed to <xneed>
Rewrite 1 Rewrite 2

Original Example

Sydney went trick or treating and the
others joined him happily. What will
Others want to do next? get candy

Sydney went trick or treating and the
others joined him happily. As a result,
Others wanted to get candy.

Sydney went trick or treating and the
others joined him happily. <xwant>
get candy.

Table 12: Some templates and a rewritten example of SociallQA. [SUBIJ] refers to a subject. There are two groups
of templates, Rewritel for GPT-2 and Rewrite2 for COMET (Bosselut et al., 2019). The relations in Rewrite2
are defined in Sap et al. (2019a) and used for training COMET. These templates are inherited from Shwartz et al.
(2020). More details can be found in Shwartz et al. (2020) and https://github.com/vered1986/self _talk.

the sample size increased. Another observation is
that a smaller sample size can already make SEQA
outperform most baseline methods.
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Figure 5: The before-attack (a) and after-attack ac-
curacy (b) of methods with different sample sizes on
COPA. The after-attack accuracy of Pro-A, CGA and
Self-Talk is below 10.0%, and thus omitted in (b).
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Figure 6: The before-attack (a) and after-attack accu-
racy (b) of methods with different sample sizes on So-
ciallQA. The after-attack accuracy of Pro-A, CGA and
Self-Talk is below 20.0%, and thus omitted in (b).
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Figure 7: The before-attack (a) and after-attack accu-
racy (b) of methods with different sample sizes on Cos-
mosQA. The after-attack accuracy of Pro-A, CGA and
Self-Talk is below 2.0%, and thus omitted in (b).
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Original Question

Rewrite

Why [SENTENCE] [CLAUSE] ?
What [NOUN] [SENTENCE] [CLAUSE] ?
What [SENTENCE] [CLAUSE] ?

[CLAUSE] [SENTENCE] because
[CLAUSE] the [NOUN] [SENTENCE] is that
[CLAUSE] it [SENTENCE] that

Original Example

Rewrite

... He was conscious but seemed dazed and prob-
ably intoxicated . Nearby there was a young
man dialing his cell phone . What may hap-
pen after the young man makes his call 7 An
ambulance would likely come to the scene .

... He was conscious but seemed dazed and prob-
ably intoxicated . Nearby there was a young
man dialing his cell phone . After the young
man makes his call , it may happen that an am-
bulance would likely come to the scene .

Table 13: Templates and a rewritten example of CosmosQA. [NOUN], [SENTENCE] and [CLAUSE] refer to a
noun, a sentence fragment and an adverbial clause, respectively.

Method  Set of Candidate Pre-trained Models

Pro-A LM as QA model: (GPT2-xlarge, COMET, RoBERTa-large, SentenceRoBERTa-large)

Pro-Q LM as QA model: (RoBERTa-large, SentenceRoBERTa-large)

MI-QA LM as QA model: (GPT2-xlarge, COMET, RoBERTa-large, SentenceRoBERTa-large)

Self-talk

LM as generator: (GPT2-xlarge, COMET)

LM as QA model: (GPT2-xlarge, COMET, RoBERTa-large, SentenceRoBERTa-large)

CGA LM as QA model and generator: (GPT2-xlarge, COMET)

SEQA

LM as generator: (GPT2-xlarge, COMET)
Feature Extractor: SentenceRoBERTa-large

Table 14: The set of candidate pre-trained models. The selected pre-trained models for each method are marked
in bold. Note that CGA achieved its best performance with COMET on SociallQA and with GPT2-xlarge on the

other datasets.

T Dev  Test
10 70.0 75.6
1 704 764
02 718 770
0.1 754 794
0.05 744 80.2

Table 15: Hyperparameter Search of SEQA. The tem-
perature is selected according to the accuracy on the
development set of COPA.
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