@inproceedings{lu-etal-2021-engage,
title = "Engage the Public: Poll Question Generation for Social Media Posts",
author = "Lu, Zexin and
Ding, Keyang and
Zhang, Yuji and
Li, Jing and
Peng, Baolin and
Liu, Lemao",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.3",
doi = "10.18653/v1/2021.acl-long.3",
pages = "29--40",
abstract = "This paper presents a novel task to generate poll questions for social media posts. It offers an easy way to hear the voice from the public and learn from their feelings to important social topics. While most related work tackles formal languages (e.g., exam papers), we generate poll questions for short and colloquial social media messages exhibiting severe data sparsity. To deal with that, we propose to encode user comments and discover latent topics therein as contexts. They are then incorporated into a sequence-to-sequence (S2S) architecture for question generation and its extension with dual decoders to additionally yield poll choices (answers). For experiments, we collect a large-scale Chinese dataset from Sina Weibo containing over 20K polls. The results show that our model outperforms the popular S2S models without exploiting topics from comments and the dual decoder design can further benefit the prediction of both questions and answers. Human evaluations further exhibit our superiority in yielding high-quality polls helpful to draw user engagements.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-etal-2021-engage">
<titleInfo>
<title>Engage the Public: Poll Question Generation for Social Media Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zexin</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keyang</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baolin</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lemao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a novel task to generate poll questions for social media posts. It offers an easy way to hear the voice from the public and learn from their feelings to important social topics. While most related work tackles formal languages (e.g., exam papers), we generate poll questions for short and colloquial social media messages exhibiting severe data sparsity. To deal with that, we propose to encode user comments and discover latent topics therein as contexts. They are then incorporated into a sequence-to-sequence (S2S) architecture for question generation and its extension with dual decoders to additionally yield poll choices (answers). For experiments, we collect a large-scale Chinese dataset from Sina Weibo containing over 20K polls. The results show that our model outperforms the popular S2S models without exploiting topics from comments and the dual decoder design can further benefit the prediction of both questions and answers. Human evaluations further exhibit our superiority in yielding high-quality polls helpful to draw user engagements.</abstract>
<identifier type="citekey">lu-etal-2021-engage</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.3</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.3</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>29</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Engage the Public: Poll Question Generation for Social Media Posts
%A Lu, Zexin
%A Ding, Keyang
%A Zhang, Yuji
%A Li, Jing
%A Peng, Baolin
%A Liu, Lemao
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F lu-etal-2021-engage
%X This paper presents a novel task to generate poll questions for social media posts. It offers an easy way to hear the voice from the public and learn from their feelings to important social topics. While most related work tackles formal languages (e.g., exam papers), we generate poll questions for short and colloquial social media messages exhibiting severe data sparsity. To deal with that, we propose to encode user comments and discover latent topics therein as contexts. They are then incorporated into a sequence-to-sequence (S2S) architecture for question generation and its extension with dual decoders to additionally yield poll choices (answers). For experiments, we collect a large-scale Chinese dataset from Sina Weibo containing over 20K polls. The results show that our model outperforms the popular S2S models without exploiting topics from comments and the dual decoder design can further benefit the prediction of both questions and answers. Human evaluations further exhibit our superiority in yielding high-quality polls helpful to draw user engagements.
%R 10.18653/v1/2021.acl-long.3
%U https://aclanthology.org/2021.acl-long.3
%U https://doi.org/10.18653/v1/2021.acl-long.3
%P 29-40
Markdown (Informal)
[Engage the Public: Poll Question Generation for Social Media Posts](https://aclanthology.org/2021.acl-long.3) (Lu et al., ACL-IJCNLP 2021)
ACL
- Zexin Lu, Keyang Ding, Yuji Zhang, Jing Li, Baolin Peng, and Lemao Liu. 2021. Engage the Public: Poll Question Generation for Social Media Posts. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 29–40, Online. Association for Computational Linguistics.