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Abstract

We study the problem of building entity tag-
ging systems by using a few rules as weak
supervision. Previous methods mostly focus
on disambiguating entity types based on con-
texts and expert-provided rules, while assum-
ing entity spans are given. In this work, we
propose a novel method TALLOR that boot-
straps high-quality logical rules to train a neu-
ral tagger in a fully automated manner. Specif-
ically, we introduce compound rules that are
composed from simple rules to increase the
precision of boundary detection and generate
more diverse pseudo labels. We further design
a dynamic label selection strategy to ensure
pseudo label quality and therefore avoid over-
fitting the neural tagger. Experiments on three
datasets demonstrate that our method outper-
forms other weakly supervised methods and
even rivals a state-of-the-art distantly super-
vised tagger with a lexicon of over 2,000 terms
when starting from only 20 simple rules. Our
method can serve as a tool for rapidly building
taggers in emerging domains and tasks. Case
studies show that learned rules can potentially
explain the predicted entities.

1 Introduction

Entity tagging systems that follow supervised train-
ing, while accurate, often require a large amount
of manual, domain-specific labels, making them
difficult to apply to emerging domains and tasks.
To reduce manual effort, previous works resort to
manual lexicons (Shang et al., 2018b; Peng et al.,
2019) or heuristic rules provided by domain ex-
perts (Fries et al., 2017; Safranchik et al., 2020;
Lison et al., 2020b) as weak supervision. For ex-
ample, LinkedHMM (Safranchik et al., 2020) can
achieve performance close to supervised models
using 186 heuristic rules in addition to a lexicon of
over two million terms. However, it is challenging
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induce new rule

If TokenString(x)==“Dallas”,
    then Label(x)=“Location”

Ryn lives in Dallas. 
John lives in Dallas where he was born.
He lives in Dallas this year. 

If POS(x)==“PROPN” 
            and PreNgram(x)==“lives in”, 
    then Label(x)=“Location”

seed rule

Fobes lives in Seattle.
She lives in Vancouver.
The man lives in California.

v3

Figure 1: Examples of a seed logical rule and a newly
induced rule from labeled data for recognizing loca-
tions. ‘x’ denotes a token span from a given sentence.

for experts to write complete and accurate rules
or lexicons in emerging domains, which requires
both a significant amount of manual effort and a
deep understanding of the target data. How to build
accurate entity tagging systems using less manual
effort is still an open problem.

In this work, we explore methods that can auto-
matically learn new rules from unlabeled data and a
small set of seed rules (e.g. 20 rules). Such methods
are desirable in real-world applications not only be-
cause they can be rapidly deployed to new domains
or customized entity types, but also because the
learned rules are often effective, interpretable, and
simple for non-experts to “debug” incorrect predic-
tions. As explained in Figure 1, new rules can be
learned from seed rules. Specifically, we propose
a novel iterative learning method TALLOR that
can learn accurate rules to train a neural tagger in
an automated manner, with goal to address two key
issues during learning process: (1) how to detect
entity boundaries and predict their types simultane-
ously with rules, (2) how to generate accurate and
diverse pseudo labels from rules.

With such a small set of seed rules as supervision,
previous works (Niu et al., 2003; Huang and Riloff,
2010; Gupta and Manning, 2014) only focus on dis-
ambiguating entity types assuming entity spans are
given or just syntactic chunks (e.g., noun phrases).
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Noun phrase TALLOR

P R F1 P R F1

BC5CDR 17.1 50.1 25.5 69.8 67.8 68.7
CHEM 3.2 35.6 5.8 63.0 60.2 61.6
CoNLL 4.1 47.3 7.5 86.9 86.7 86.8

Table 1: Boundary detection performance from our
method and parsing based noun phrases.

However, we find that syntactic chunks often do
not align well with target entity spans. For example,
given a sentence from CoNLL2003: “Germany’s
representative to the European Union’s veterinary
committee...”, the noun phrases1 are “Germany’s
representative” and “the European Union’s veteri-
nary committee”, but gold entities in the sentence
are “Germany” and “European Union”. We used
noun phrases extracted from spaCy as predicted
entity boundaries and compared them with ground
truth entity boundaries, which are extracted based
on the results from syntactic parsing. This setting
of using noun phrases as entity candidates is simi-
lar to previous work (Niu et al., 2003; Huang and
Riloff, 2010). The results are shown in Table 1,
a majority of target entities are missed if we use
noun phrases as entity candidates, which will not
be recognized correctly later.

To address both entity boundary detection and
type classification simultaneously, we first define
five types of simple logical rules considering the
lexical, local context, and syntax information of
entities. We notice that simple logical rules are
often inaccurate when detecting entity boundaries.
Therefore, we propose to learn compound logical
rules, which are composed from multiple simple
rules and logical connectives (e.g. “and”). For ex-
ample, given the sentence “John lives in Dallas
where he was born”, the simple rule “lives in ”,
which is a preceding context clue, will match mul-
tiple token spans such as “Dallas”, “Dallas where”,
“Dallas where he” etc. In contrast, compound logi-
cal rules can both detect entity boundaries and clas-
sify their types accurately. For example, using both
the preceding context and the part-of-speech (POS)
tag rule (e.g. “lives in ” and POS is a proper noun)
can correctly identify the Location entity “Dallas”.

Though we aim to learn accurate rules, automat-
ically acquired rules can be noisy. To ensure the
quality of generated pseudo labels, we design a
dynamic label selection strategy to select highly

1Noun phrases are extracted using spaCy noun chunks.

accurate labels so that the neural tagger can learn
new entities instead of overfitting to the seed rules.
Specifically, we maintain a high-precision label set
during our learning process. For each learning it-
eration, we first automatically estimate a filtering
threshold based on the high-precision set. Then,
we filter out low-confidence pseudo labels by con-
sidering both their maximum and average distances
to the high-precision set. Highly confident labels
are added into the high-precision set for the next it-
eration of learning. Our dynamic selection strategy
enables our framework to maintain the precision of
recognized entities while increasing recall during
the learning process, as shown in our experiments.

We evaluate our method on three datasets. Exper-
imental results show that TALLOR outperforms
existing weakly supervised methods and can in-
crease the average F1 score by 60% across three
datasets over methods using seed rules. Further
analysis shows that TALLOR can achieve sim-
ilar performance with a state-of-the-art distantly
supervised method trained using 1% of the human
effort2. We also conduct a user study concerning
the explainability of learned logical rules. In our
study, annotators agree that 79% (on average over
three annotators) of the matched logical rules can
be used to explain why a span is predicted as a
target entity.

In summary, our main contributions are:
• We define five types of logical rules and intro-

duce compound logical rules that can accurately
detect entity boundaries and classify their types.
Automatically learned rules can significantly re-
duce manual effort and provide explanations for
entity predictions.

• To effectively learn rules, we propose a novel
weakly supervised method with a dynamic label
selection strategy that can ensure the quality of
pseudo labels.

• We conduct experiments on both general and
domain-specific datasets and demonstrate the ef-
fectiveness of our method.

2 Tagging with Learned Logical Rules

We study named entity tagging under a weakly su-
pervised setting, and propose TALLOR ( Tagging
with Learnable Logical Rules) to build a tagger
with only a small set of rules. Compared with
previous work, our framework requires less human

2In experiments, our method used 20 rules, the other sys-
tem used a manually constructed lexicon of over 2000 terms.
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unlabeled data rule candidates

train & apply neural tagger score and select new rulesapply rules & select training 
instances

seed rules

logical rules

entity candidates

  
<s>Barack Obama lives in Washington.</s>
<s>Lori Lightfoot lives in Chicago.</s>
<s>She received education in Hawaii.</s>

example rule selected instance examples entity prediction examples newly selected rule examples

Dallas→Location 

lives in      .</s> → Location        0.9
lives in     (PROPN) → Location  0.8

in     (PROPN) → Location          0.1

<s>Ryan lives in Dallas.</s>   

<s>John moved to Dallas.</s>   

<s>George Dallas was a politician.</s>   

Figure 2: Overview of our tagging framework with logical rules and examples for each step.

effort via the use of learned rules; we also show that
these rules can be used to explain tagging results.
Instead of treating tagging as a sequence labeling
task, we formulate tagging as a span labeling task,
in which named entities are modeled as spans over
one or more tokens. With this setting, logical rules
can easily be used for labeling entities.

Overview Figure 2 shows the flow of our iter-
ative learning framework, which consists of the
following components. First, we generate all entity
candidates and rule candidates from unlabeled data.
Then, for each iteration, we apply logical rules to
the unlabeled data and select a set of high-quality
weak training examples. Next, we train a neural tag-
ger with the selected training examples and predict
the labels of unlabeled data using the trained model.
Finally, we select new accurate logical rules from
candidate rules using the predictions. The newly
learned rules will further be used to obtain weak
training labels for the next iteration.

2.1 Logical Rule Extraction

In our work, a logical rule is defined in the form of
“if p then q” (or “p→ q”).3 For entity tagging, q is
one of the target entity classes, and p can be any
matching logic. For example, “if a span’s preceding
tokens are ‘lives in’, then it is a Location”. We
design the following five types of simple logical
rules to consider the lexical, local context, and
syntax information of an entity candidate.
Simple Logical Rules. A simple logical rule
is defined as a logical rule that contains a sin-
gle condition predicate. We design the follow-
ing five predicates to represent common logi-
cal conditions. Given a candidate entity, (1)

3“heuristic rules” and “labeling rules” can also be con-
verted to logical rules, so they can be used interchangeably.

TokenString matches its lexical string; (2)
PreNgram matches its preceding context tokens;
(3) PostNgram matches its succeeding context to-
kens; (4) POSTag matches its part-of-speech tags;
(5) DependencyRel matches the dependency rela-
tions of its head word.

  StatesHe moved in 1916to the United

PRON VERB ADP NUMADP DET PROPN PROPN

pobj

Given a candidate entity “United States” in the
above example, we can extract the following
example logical rules for recognizing Locations:4

TokenString==“united state” → Location,
PreNgram==“move to the” → Location,
PostNgram==“in 1916” → Location,
POSTag==“PROPN PROPN” → Location,
DependencyRel==“to” (via pobj) → Location.

More details about extraction of each condition
predicate are included in Appendix A.1.
Compound Logical Rules. A compound logi-
cal rule is formed with multiple condition pred-
icates and logical connectives including and (∧),
or (∨), and negation (¬). In this work, we fo-
cus on learning compound logical rules connected
with conjunctions (∧) to recognize entities pre-
cisely, because simple logical rules are often in-
sufficient to identify entity boundaries. In the
above example, the rule PreNgram==“move to the”
can match multiple candidates such as “United”,
“United States”, and “United States in” etc., of
which many are inaccurate. However, with a
compound rule, e.g. PreNgram==“move to the” ∧
POSTag==“PROPN PROPN”, we can correctly rec-
ognize that “Unitied States” is a Location.

4All words in rules are lower-case and lemmatized.
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We enumerate and extract all possible logical
rules from unlabeled data based on our pre-defined
rule types before the training process.

2.2 Applying Logical Rules

At each iteration, we apply both seed and learned
logical rules to unlabeled entity candidates to ob-
tain a set of weakly labeled instances. In case an
entity candidate is matched by multiple rules (po-
tentially conflicting), we use the majority vote as
the final weak label.
Entity Candidates. In this work, we treat tagging
as a span labeling task as described earlier. Be-
fore our learning process, we enumerate all token
spans up to a maximum length from unlabeled data
as entity candidates. We also notice that common
phrases (e.g., “United States”) are rarely split into
different entities (e.g. “United”, “States”). There-
fore, we generate a list of common phrases using
the unsupervised AutoPhrase method (Shang et al.,
2018a) and merge two continuous spans together as
a single entity candidate if they can form a common
phrase.

2.3 Dynamic Training Label Selection

After applying the learned rules to unlabeled data,
some of the weakly generated labels can be incor-
rect, which will lead to poor performance of our
neural tagger in the next step. To filter out noisy
labels, we propose to maintain a high-precision
entity set to keep the accurately labeled training
examples from each iteration.

Inspired by Zhang et al. (2020), we design a
method to select high-quality labels from weakly
generated labels by seed logical rules into the high-
precision set. Specifically, given an entity cate-
gory i, its corresponding high-precision setHi, and
a weakly labeled instance eq, we first compute a
confidence score of eq belonging to category i by
considering both its maximum pair similarity to
the high-precision set Hi (called local score) and
its average similarity to Hi (called global score).
Then, the weakly labeled instance eq will be se-
lected into the high-precision set if its confidence
score is larger than a threshold that is also estimated
based on the high-precision set.
Instance Embedding. We compute the embed-
ding of an entity instance as the mean of the em-
beddings of its tokens. A token’s embedding is
computed as the average of the first three layers’

outputs from a pre-trained language model 5.
Local Score. Given a weakly labeled instance eq
and an example ei from the high-precision set, we
first compute their similarity as the cosine score
between their embeddings. Then, we compute the
local confidence score of eq belonging to category
i as the maximum of its similarities between all
examples in the high-precision set.
Global Score. The local score is estimated based
on a single instance in the high-precision set.
Though it can help explore new entities, it can also
be inaccurate in some cases. Therefore, we propose
to compute a more reliable score to estimate the
accuracy of an instance eq belonging to a category
i, which is called the global score. Specifically, we
first sample a small set Es from the high precision
set Hi and then compute the prototypical embed-
ding xEs of Es as the average of embeddings of all
instances in Es. In our work, we sample N times
and compute the global score as:

scoreglbi =
1

N

∑
1≤j≤N

cos(xj
Es
,xeq) (1)

To balance the exploration ability and reliability,
we compute the final confidence score of a weakly
labeled instance belonging to a category as the
geometric mean of its local and global scores.
Dynamic Threshold Estimation. We hypothesize
that different categories of entities may have dif-
ferent thresholds for selecting high-quality weak
labels. We may also need to use different thresh-
olds at different iterations to dynamically balance
exploration and reliability. For example, we may
expect our learning process to be reliable at ear-
lier iterations and be exploratory at later stages.
Motivated by this hypothesis, we propose to use
a dynamic threshold to select high-quality weak
labels. Specifically, we hold out one entity instance
in the high precision set and compute its confidence
score with respect to the rest of the examples in the
high-precision set. We randomly repeat T times
and use the minimum value as the threshold. For
category i, it is calculated as:

threshold = τ · min
k≤T,ek∈Hi

scorei(ek) (2)

where ek is the held-out entity instance and τ ∈
[0, 1] is a temperature to control the final threshold.

5We used different pre-trained language models for differ-
ent domains. Details are in Section 3.1.
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2.4 Neural Tagging Model

Following Jiang et al. (2020), we treat tagging as a
span labeling problem. The key idea is to represent
each span as a fixed-length embedding and make
predictions based on its embedding. Briefly, given
a span and its corresponding sentence, we first ini-
tialize all tokens in a sentence using a pre-trained
language model, and then apply a Bi-LSTM and
Self-Attention layer, and obtain the contextual em-
bedding of the sentence. Finally, we compute the
span embedding by concatenating two components:
a content representation calculated as the weighted
average across all token embeddings in the span,
and a boundary representation that concatenates
the embeddings at the start and end positions of the
span. Then, we predict the label of a span using
a multilayer perceptron (MLP). For our detailed
formulation please refer to Appendix A.2.

2.5 Logical Rule Scoring and Selection

Every iteration, we first predict the labels of all
text spans using our neural tagging model. Then,
we rank and select the 70%6 most confident spans
per category based on their prediction probabilities
from the tagging model as weak labels for com-
puting rule scores. We select new rules from rule
candidates based on their confidence scores. We
adopt the RlogF method (Thelen and Riloff, 2002)
to compute the confidence score of a rule r:

F (r) =
Fi

Ni
log2(Fi) (3)

where Fi is the number of spans predicted with
category label i and matched by rule r, and Ni

is the total number of spans matched by rule r.
Intuitively, this method considers both the accuracy
and coverage of rules because Fi

Ni
is the accuracy

of the rule and log2(Fi) represents the rule’s ability
to cover more spans.

In our experiments, we select the top K rules for
each entity class per iteration. We increase K by η
per iteration to be more exploratory in later itera-
tions. We also use a threshold θ of rule accuracy
(i.e. Fi

Ni
) to filter out noisy rules. This method al-

lows a variety of logical rules to be considered, yet
is precise enough that all logical rules are strongly
associated with the category.

6Different categories and datasets may require different
thresholds to select high-quality labels. Setting a percentage
means we will have dynamic thresholds for different cate-
gories so that the model will be robust to different categories
and domains.

3 Experiments

We first compare our method with baselines on
three datasets and further analyze the importance
of each component in an ablation study. We also
report the performance of our method with different
numbers of seed rules and at different iterations.
Finally, we show an error analysis and present a
user study to analyze how many logical rules can
be used as understandable explanations.

3.1 Experimental Setting

We evaluate our method on the following three
datasets. Note that we use each training set without
labels as our unlabeled data.

BC5CDR (Li et al., 2016) is the BioCreative V
CDR task corpus. It contains 500 train, 500 dev,
and 500 test PubMed articles, with 15,953 chemi-
cal and 13,318 disease entities.
CHEMDNER (Krallinger et al., 2015) contains
10,000 PubMed abstracts with 84,355 chemical
entities, in which the training/dev/test set contain
14,522/14,572/12,434 sentences respectively.
CoNLL2003 (Sang and Meulder, 2003) con-
sists of 14,041/3,250/3,453 sentences in the train-
ing/dev/test set extracted from Reuters news arti-
cles. We use Person, Location, and Organization
entities in our experiments.7

Seed Rules and Parameters. In our experiments,
we set the maximum length of spans to 5, and se-
lect the top K = 20 rules in the first iteration for
BC5CDR and CoNLL2003, and K = 60 for the
CHEMDNER dataset. Since it is relatively easy
for users to manually give some highly accurate
TokenString rules (i.e., entity examples), we use
TokenString as seed rules for all experiments.
To be specific, we manually select 20 highly fre-
quent TokenString rules as seeds for BC5CDR
and CoNLL2003 and 40 for CHEMDNER because
of its large number of entities. The manual seeds
for each dataset are shown in Appendix A.7. For
pre-trained language models, we use BERT (Devlin
et al., 2019) for CoNLL2003, and SciBert (Beltagy
et al., 2019) for BC5CDR and CHEMDNER. All
our hyperparameters are selected on dev sets. More
setting details are in Appendix A.4.

7We do not evaluate on Misc category because it does
not represent a single semantic category, which cannot be
represented with a small set of seed rules.
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Methods BC5CDR CHEMDNER CONLL2003

Precision Recall F1 Precision Recall F1 Precision Recall F1

Seed Rules 94.09 3.81 7.33 91.60 13.19 23.07 95.77 2.76 5.36
LinkedHMM 10.18 15.60 12.32 23.99 10.77 14.86 19.78 31.51 24.30

HMM-agg. 43.70 21.60 29.00 49.60 18.40 26.80 52.00 8.50 14.60
CGExpan 40.96 24.75 30.86 45.70 25.58 32.80 55.97 28.7 37.95
AutoNER 42.22 30.66 35.52 66.83 27.59 39.05 32.07 5.98 10.08

Seed Rules + Neural Tagger 78.33 21.60 33.86 84.18 21.91 34.78 72.57 24.68 36.83
Self-training 73.69 29.55 42.19 85.06 20.03 32.42 72.80 24.83 37.03

Our Learned Rules 79.29 18.46 29.94 69.86 21.97 33.43 65.51 21.12 31.94
Ours w/o Autophrase 74.56 32.93 45.68 67.74 55.99 61.31 71.37 25.50 37.57

Ours w/o Instance Selection 58.70 63.37 60.95 42.64 48.25 45.27 58.51 58.8 58.65
TALLOR 66.53 66.94 66.73 63.01 60.18 61.56 64.29 64.14 64.22

Table 2: Performance of baselines (in upper section), our method and its sub-components (in lower section).

3.2 Compared Baseline Methods

Seed Rules. We apply only seed rules to each test
set directly and evaluate their performance.
CGExpan (Zhang et al., 2020) is a state-of-the-
art lexicon expansion method by probing a lan-
guage model. Since TokenString seed rules
can be viewed as a seed lexicon, we expand its
size to 1,000 using this method and use them as
TokenString rules. We apply the top 200, 500,
800, and 1,000 rules to test sets and report the best
performance.
AutoNER (Shang et al., 2018b) takes lexicons of
typed terms and untyped mined phrases as input.
We use the best expanded lexicon from CGExpan
as typed terms, and both of the expanded lexicon
and the mined phrases from AutoPhrase (Shang
et al., 2018a) as untyped mined phrases. For de-
tailed information on the AutoNER dictionary, re-
fer to Appendix A.6
LinkedHMM (Safranchik et al., 2020) introduces
a new generative model to incorporate noisy rules
as supervision and predict entities using a neural
NER model. In our experiments, we use the ex-
panded lexicon by CGExpan as tagging rules and
AutoPhrase mined phrases as linking rules.
HMM-agg. (Lison et al., 2020a) proposes a hid-
den Markov model to first generate weak labels
from labeling functions and train a sequence tag-
ging model. We convert the expanded lexicon by
CGExpan to labeling functions and report results
of the tagging model.
Seed Rule + Neural Tagger. This method is our
framework without iteration learning. After apply-
ing seed rules, we use the weakly generated labels
to train our neural tagger and report the result of
the tagger.
Self-training. We first obtain weak labels by ap-

plying seed rules. Then, we build a self-training
system using the weak labels as initial supervision
and our neural tagger as the base model.

Methods (Fries et al., 2017; Ratner et al., 2017;
Huang and Riloff, 2010) which use noun phrases
as entity candidates are not included here be-
cause noun phrases have poor recall on the three
datasets as shown in Table 1. CGExpan outper-
forms other entity set expansion methods (e.g., Yan
et al. (2019)) so we use CGExpan as our baseline
for automatic lexicon expansion.

3.3 Performance of Compared Methods

We present the precision, recall, and micro-
averaged F1 scores on three datasets in Table 2.
Results show that our method significantly outper-
forms baseline methods obtaining an average of 24-
point F1 improvement across three datasets over
the best baseline.

We see that the precision of our seed rules is
high, but the recall is lower. The lexicon expansion
method (CGExpan) can recognize more entities but
also introduces errors resulting in an improvement
to recall but a dramatic decrease in precision.

Existing weakly supervised methods (i.e., Au-
toNER, LinkedHMM and HMM-agg.) cannot rec-
ognize entities effectively with either seed rules
or expanded rules by CGExpan. These methods
require a high-precision lexicon as input; however,
the precision of the automatically expanded lexicon
is not sufficient to meet this requirement. Though
seed rules are very accurate, they lack coverage of
various entities.

Our method without iteration (Seed Rules + Neu-
ral Tagger) and self-training can achieve high pre-
cision because of the accurate pseudo labels gener-
ated from seed rules. It is interesting to note that
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Figure 3: (a) Iterations vs. performance of our method on BC5CDR. (b) Performance with different numbers of
seed rules. (c) Performance of AutoNER with different sizes of manual lexicon and our method on BC5CDR.

the self-training method based on our neural tagger
also achieved low recall. We hypothesize that this
is mainly due to the neural tagger overfitting the
small set of labels from seed rules.
Ablation Study. We also performed an ablation
study to analyze the importance of some compo-
nents in our framework, and report the performance
in Table 2 (the lower section). Results show that our
learned rules are accurate but lack coverage. With-
out using common phrases mined by Autophrase
(i.e., Ours w/o Autophrase), our method achieves
dramatically lower recall demonstrating the effec-
tiveness of common phrases for improving cover-
age. Without high-quality training instance selec-
tion (Ours w/o Instance Selection), the precision is
lower than our best method indicating the impor-
tance of the instance selection step.

3.4 Analysis of Learning Iterations and Seeds
Performance vs. Iterations. Figure 3a shows the
performance of our method at different iterations.
We see that our method improves the recall from
20% to over 60% during the learning process with
a slight decease in precision, and achieves the best
F1 score after 25 iterations. Results on other two
datasets show the same trend (in Appendix A.8).
Performance with Different Numbers of Seeds.
Figure 3b shows the performance of our method
using different numbers of manually selected seed
rules on three datasets. We see that our method
can achieve continuous improvement using more
seeds. We also notice that our method can achieve
over 55% F1 on CHEMDNER with only 10 seeds
demonstrating the effectiveness of our framework
under minimal supervision setting. Our method
obtains significantly better results (around 65% F1)
when using 20 seeds than 10 seeds on BC5CDR
and CoNLL indicating that 20 seeds is a reasonable
starting point for building a tagging system without

much manual effort.

3.5 Comparison with Distant Supervision

AutoNER (Shang et al., 2018b) is a distantly super-
vised method using a manually created lexicon as
supervision. We also compared our method to this
method to figure out how many terms we need to
manually created for AutoNER to achieve similar
performance with our method. We conducted ex-
periments on BC5CDR and used only 20 seeds for
our method. For AutoNER, we used additional M
terms from a manually created lexicon (Shang et al.,
2018b)8. Figure 3c shows the performance with
different values of M. Results show that AutoNER
needs an additional ∼ 2000 terms to achieve simi-
lar performance (around 66% F1) with our method,
which demonstrates that our method is effective un-
der minimal supervision without access to a large
manual lexicon.

3.6 Analysis of Rule Selection Strategies

In our work, we designed three rule selection strate-
gies: (1) entity type selects the top K rules for each
entity category; (2) rule type selects the top K rules
for each logical rule type; (3) entity&rule type se-
lects the top K rules for each entity category and
logical rule type. Results in Table 4 show that entity
type based selection achieves the best performance.

3.7 Error Analysis of Learned Logical Rules

We show the statistics of different types of rules
learned after all iterations in Table 5.9 We see that
TokenString rule is the most rule type for domain-
specific datasets (BC5CDR and CHEMDNER). For

8AutoNER authors compiled the lexicon from MeSH
database and CTD Chemical and Disease vocabularies, which
are manually created by experts.

9TokenStr, Pre, Post, POSTag, and Dep are short for Token-
String, PreNgram, PostNgram, POSTag, and DependencyRel.
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Examples Predicted Labels Gold Label

Error Type: Similar Semantic Concepts (56%)
The aim of this work is to call attention to the risk of tacrolimus use in patients
with SSc.

Disease NotEntity

We recorded time to first dysrhythmia occurrence , respective times to 25 % and
50 % reduction of the heart rate ( HR ) and mean arterial pressure , and time to
asystole and total amount of bupivacaine consumption.

Disease NotEntity

The severity of pain due to etomidate injection , mean arterial pressure , heart
rate , and adverse effects were also evaluated.

Disease NotEntity

Error Type: Inaccurate Boundary (20%)
Furthermore ameliorating effect of crocin on diazinon induced disturbed
cholesterol homeostasis was studied.

Disease Disease

Pretreatment with S. virgaurea extract for 5 weeks at a dose of 250 mg / kg fol-
lowed by isoproterenol injection significantly prevented the observed alterations.

Chemical Chemical

This depressive -like profile induced by METH was accompanied by a marked
depletion of frontostriatal dopaminergic and serotonergic neurotransmission ,
indicated by a reduction in the levels of dopamine , DOPAC and HVA , tyrosine
hydroxylase and serotonin , observed at both 3 and 49 days post - administration.

Chemical Chemical

Error Type: Nested Entity (20%)
Early postoperative delirium incidence risk factors were then assessed through
three different multiple regression models.

Disease Disease

The impact of immune - mediated heparin -induced thrombocytopenia type II
(HIT type II ) as a cause of thrombocytopenia.

Disease Disease

Extensive literature search revealed multiple cases of coronary artery vasospasm
secondary to zolmitriptan , but none of the cases were associated with TS.

Disease Disease

Error Type: Others (4%)
It is characterized by its intense urotoxic action , leading to hemorrhagic cystitis. Disease NotEntity
Famotidine is a histamine H2-receptor antagonist used in inpatient settings for
prevention of stress ulcers and is showing increasing popularity because of its
low cost .

Chemical NotEntity

It is characterized by its intense urotoxic action , leading to hemorrhagic cystitis. Disease NotEntity

Table 3: Gold entities are underlined, predicted entities are in red. Error type “similar semantic concepts” means
that our rules cannot distinguish two closely related semantic concepts. Error type “inaccurate boundary” means
our rules label incorrectly about the boundaries of entities. Error type “nested entity” means the error is due to
multiple possible entities are nested. NotEntity means the predicted span is not an entity.

Rule Selection Strategy Precision Recall F1

Rule Type 57.14 63.00 59.93
Entity&Rule Type 61.73 64.97 63.31

Entity Type 66.53 66.94 66.73

Table 4: Performance on the BC5CDR dataset with
three different rule selection strategies.

Rule Type BC5CDR CHEMDNER CoNLL

TokenStr 503 (41%) 1667 (44%) 779 (25%)
Pre ∧ Post 203 (17%) 629 (17%) 956 (31%)
Pre ∧ POS 288 (24%) 585 (16%) 455 (15%)

POS ∧ Post 149 (12%) 418 (11%) 438 (14%)
Dep ∧ POS 79 (6%) 432 (12%) 469 (15%)

Table 5: Number and ratio of different type rules.

the general domain task, PreNgram∧PostNgram is
the most rule type learned by our model.

We also performed an error analysis on the
BC5CDR dataset. Specifically, we sampled 100
entities predicted incorrectly by our learned rules
and analyzed their error types. Analysis results

show that 56% of errors are caused by an inabil-
ity to distinguish closely related entity categories
(chemicals vs medications), and another 20% are
due to incorrect detection of entity boundaries. We
also notice that some spans (e.g. “HIT type II”) and
their sub-spans (e.g. “HIT”) are both disease enti-
ties (i.e., nested entities), but only the longer ones
are annotated with gold labels. Our rules some-
times only predict the sub-spans as diseases, which
contributes to 20% of the errors. We put examples
of each error type in Table 3.

3.8 User Study of Explainable Logical Rules

Since our logical rules are intuitive clues for recog-
nizing entities, we hypothesize that automatically
learned rules can be used as understandable expla-
nations for the predictions of entities. Therefore,
we conducted a user study to find out how many
logical rules are explainable. Specifically, we ap-
plied the learned rules in BC5CDR and sampled
100 entities labeled by at least one logical rule other
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Labeled Entities and Sentences Learned Logical Rules Entity type

This occlusion occurred after EACA therapy in a patient with
SAH and histopathological documentation of recurrent SAH.

PreNgram=“a patient with”
∧ PostNgram=“and” Disease

We also analyzed published and unpublished follow-up data to

determine the risk of
PROPN
ICH in antithrombotic users with MB.

PreNgram=“the risk of”
∧ POStag=PROPN Disease

3 weeks after initiation of amiodarone therapy for
ADJ

atrial
NOUN

fibrillation.
PreNgram=“therapy for”

∧ POStag=ADJ NOUN Disease

Although 25 mg of
NOUN

lamivudine was slightly less effective than
100mg (P=.011) and 300 mg ( P=.005).

PreNgram=“mg of”
∧ POStag=NOUN Chemical

These results suggest that the renal protective effects of
NOUN

misoprostol
is dose - dependent.

PreNgram=“protective effect of”
∧ POStag=NOUN Chemical

Table 6: Examples of learned rules and correctly labeled entities (in red) by the learned rules in BC5CDR dataset.

than TokenString10 for our user study. Some exam-
ples are shown in Table 6. We asked two annotators
without domain knowledge and one biological ex-
pert to annotate whether our learned logical rules
can be understood and used as explanations for why
a span is predicted as a disease or chemical. Man-
ual annotation results show that the two annotators
and the biological expert agree that 81%, 87%, and
70% of the predicted entities can be explained by
logical rules, respectively.

4 Related Work

Different types of methods have been proposed to
build named entity tagging systems using indirect
or limited supervision. Distant supervision (Mintz
et al., 2009) is one kind of methods that have been
proposed to alleviate human effort by training mod-
els using existing lexicons or knowledge bases.
Recently, there have been attempts to build NER
systems with distant supervision (Ren et al., 2015;
Fries et al., 2017; Giannakopoulos et al., 2017). Au-
toNER (Shang et al., 2018b) trained a NER system
by using both typed lexicons and untyped mined
phrases as supervision. Peng et al. (2019) proposed
an AdaPU algorithm to incorporate an incomplete
dictionary as supervision. However, lexicons or
knowledge bases are not always available for new
domains and tasks, especially in specific domains
and low-resource settings. Manually constructing
these lexicons is often very expensive.

Bootstrapping is a technique to learn models
from a small set of seeds, which has been pro-
posed for word sense disambiguation (Yarowsky,
1995) and product attribute extraction (Putthivid-
hya and Hu, 2011). Bootstrapping methods (Niu
et al., 2003; Huang and Riloff, 2010) have been

10We exclude TokenString rules because they are self-
explainable.

proposed for building entity tagging systems by
assuming target entities are just proper names or
noun phrases. Gupta and Manning (2014) used
an improved pattern scoring method to bootstrap
domain-specific terminologies with restricted part-
of-speech patterns. However, previous works only
focused on disambiguating entity types by assum-
ing target entities are given or just syntactic chunks.
But, as we shown earlier, target entities often do not
align well with simple syntactic chunks. Bootstrap-
ping methods that can automatically detect entity
boundaries and predict their types simultaneously
are desirable in real-world applications.

Recently, methods have been proposed to ob-
tain weak labels by manually writing labeling func-
tions (Bach et al., 2017). Based on this idea, sev-
eral methods (Safranchik et al., 2020; Lison et al.,
2020a) have been proposed for NER by assum-
ing the availability of a sufficient amount of hand-
crafted labeling functions and lexicons. However,
manually designing labeling rules is challenging,
which requires a significant amount of manual ef-
fort and domain expertise. Our work aims to learn
logical rules automatically to reduce human effort.

5 Conclusion

In this work, we explored how to build a tagger
from a small set of seed logical rules and unlabeled
data. We defined five types of simple logical rules
and introduced compound logical rules that are
composed from simple rules to detect entity bound-
aries and classify their types simultaneously. We
also design a dynamic label selection method to se-
lect accurate pseudo labels generated from learned
rules for training a discriminative tagging model.
Experimental results demonstrate that our method
is effective and outperforms existing weakly super-
vised methods.
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A Appendices

A.1 Details of Logical Rule Extraction

In this section, we present details of the extrac-
tion and the matching logic of our designed logical
rules, using the following sentence with a location
entity United States as an example.

Example 1.

  StatesHe moved in 1916to the United

PRON VERB ADP NUMADP DET PROPN PROPN

pobj

We first obtain a parsed dependency tree
of the sentence using the spaCy pipeline
(en core web sm model). Then our framework
will generate all candidate rules for each candi-
date entity. Here, we use the token span United
States as the target candidate entity to show how
these rules are extracted.
TokenString. We use the lower-case and lemma-
tized tokens of an entity candidate as a TokenString
rule. Given the above example, we will extract a
TokenString=“united state” rule.
PreNgram. It matches preceding N tokens. All
tokens in rules will be lower cased and lemmatized.
In our experiments, we set N to 3. In Example 1,
we extract PreNgram=“the”, PreNgram=“to the”,
and PreNgram=“move to the” as candidate rules.
PostNgram. It matches the succeeding N tokens,
which are also lower cased and lemmatized. N is
set to 3 in our experiments. In Example 1, we can
extract PostNgram=“in”, PostNgram=“in 1916”,
and PostNgram=“in 1916 .” as candidate rules.
POSTag. We extract the part-of-speech tags of to-
kens in a span text using the spaCy pipeline. In Ex-
ample 1, we can extract POSTag=“PROPN PROPN”
as a candidate rule.
DependencyRel. We first find the head word11 in
the text span. Then, we extract the governor (i.e.
head) of the head word as a dependency rule with
depth 1. In Example 1, state is the head word
of text span United States. to is the gover-
nor of head word state, so DependencyRel=“to”
is the DependencyRel rule with depth 1. Next,
all tokens dependent on the head word are con-
sidered as DependencyRel rules with depth 2.
In Example 1, word move is logical rule with
depth 2. We use ‖ to connect token with depth
1 and token with depth 2. Finally, in Example

11For simplicity, we just used the last token as the head
word of a token span.

1, we have logical rule DependencyRel=“to” and
DependencyRel=“move‖to”.

The numbers of rule candidates for each dataset
are: BC5CDR (108,756), CHEMDNER (441, 595),
CONLL2003 (142, 976).

A.2 Details of Neural Tagger
In this section, we present details of span represen-
tation and prediction in our neural tagger.
Span Representation. Given a sentence x =
[w1, w2, . . . , wn] of n tokens, a span si =
[wbi , wbi+1

, . . . , wei ], where bi, ei are the start and
end indices respectively. The representation of
spans contains two components: a content repre-
sentation zci calculated as the weighted average
across all token embeddings in the span, and a
boundary representation zui that concatenates the
embeddings at the start and end positions of the
span. Specifically,

c1, c2, . . . , cn = TokenRepr(w1, w2, . . . , wn),

u1,u2, ...,un = BiLSTM(c1, c2, . . . , cn),

zci = SelfAttn(cbi , cbi+1, . . . , cei),

zui = [ubi ;uei ], zi = [zci ; z
u
i ],

where TokenRepr could be non-contextualized,
such as Glove (Pennington et al., 2014), or con-
textualized, such as BERT (Devlin et al., 2019).
BiLSTM is a bi-directional LSTM layer and
SelfAttn is a self-attention layer. For further de-
tails please refer to Lee et al. (2017).
Span Prediction. We predict labels for all spans
up to a fixed length of l words using a multilayer
perceptron (MLP):

oi = softmax(MLPspan(zi)) (4)

where oi is prediction for the span. We intro-
duce one negative label NEG as an additional label
which indicates invalid spans (i.e., spans that are
not named entities in the corpus).

A.3 Negative Instances for Training
To provide negative supervision for neural network
training, we pre-process unlabeled data and collect
all noun phrases. Token spans outside noun phrases
are used as initial negative supervision. Compared
with previous works (Ratner et al., 2017; Fries et al.,
2017) that directly use noun phrases as entity can-
didates, in our work, noun phrases only provide
negative supervision. In the following iterations,
these negative instances still have a chance to be
recognized correctly.
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Figure 4: Iterations vs. performance of the neural NER
tagger on CHEMDNER datasets.
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Figure 5: Iterations vs. performance of the neural NER
tagger on CoNLL2003 datasets.

A.4 Parameters

In our neural NER tagger, we use the Adam opti-
mizer with learning rate 2e−5, a dropout ratio 0.5,
and a batch size of 32 for all experiments. For bet-
ter stability, we use gradient clipping of 5.0. In
addition, the maximum length of spans is 5, and
precision thresholds for rules are 0.9 for all experi-
ments.

In the dynamic label selection step, we set the
temperature of thresholds to 0.8, sample times
N = 50, Es = 3, and the temperature τ = 0.8
to control threshold. In logical rule scoring and se-
lection step, we set η = 1, and threshold θ = 0.9.

In our experiments, we use SciBert for two
biomedical datasets and Bert for CoNLL2003
dataset. During training, we run the framework
for 32 iterations for all datasets and select the best
model based on development sets.

Condition Label

TokenString(x)==“nicotine”
TokenString(x)==“morphine”
TokenString(x)==“haloperidol”
TokenString(x)==“warfarin”
TokenString(x)==“clonidine”
TokenString(x)==“creatinine”
TokenString(x)==“isoproterenol”
TokenString(x)==“cyclophosphamide”
TokenString(x)==“sirolimus”
TokenString(x)==“tacrolimus”

Chemical

TokenString(x)==“proteinuria”
TokenString(x)==“esrd”
TokenString(x)==“thrombosis”
TokenString(x)==“tremor”
TokenString(x)==“hepatotoxicity”
TokenString(x)==“hypertensive”
TokenString(x)==“thrombotic”
TokenString(x)==“microangiopathy”
TokenString(x)==“thrombocytopenia”
TokenString(x)==“akathisia”

Disease

Table 7: Seed logical rules for BC5CDR dataset.

A.5 Implementation
We implement our framework with Pytorch 1.4.012

and our rule labeling is based on Snorkel 0.9.513.
We train our framework on NVIDIA Quadro
RTX 8000 GPU. Our neural NER module has
114,537,220 parameters. It takes about 30 minutes
to complete a whole iteration.

A.6 Dictionary for AutoNER
In Table 2, we used the same manual seed rules
as supervision for all experiments. For AutoNER,
all phrases generated from AutoPhrase are used
as untyped phrases (i.e., full dictionary in Au-
toNER), the sizes are: BC5CDR (6,619), CHEMD-
NER (15,995), CONLL2003 (4,137). We expanded
seeds with CGExpan and used the expansion as
the typed terms for AutoNER (i.e., the core dictio-
nary in AutoNER). We experimented with different
sizes of dictionaries and reported the best results.
The sizes for the best performance are: BC5CDR
(800), CHEMDNER (500), CONLL2003 (1000).
We found that the performance will be lower when
we try to use larger automatically expanded dictio-
naries.

A.7 Seed Logical Rules
In this section, we show the seeds used in experi-
ments of Table 2.

Seed logical rules for BC5DCR, CoNLL2003
and CHEMDNER is shown in Table 7, 8 and 9

12https://pytorch.org/
13https://www.snorkel.org/



4581

Condition Label

TokenString(x)==“britain”
TokenString(x)==“italy”
TokenString(x)==“russia”
TokenString(x)==“sweden“
TokenString(x)==“belgium”
TokenString(x)==“iraq”
TokenString(x)==“south africa”
TokenString(x)==“united states”

Location

TokenString(x)==“wasim akram”
TokenString(x)==“waqar younis”
TokenString(x)==“mushtaq ahmed”
TokenString(x)==“mother teresa”
TokenString(x)==“aamir sohail”
TokenString(x)==“bill clinton”
TokenString(x)==“saeed anwar”

Person

TokenString(x)==“osce”
TokenString(x)==“nato”
TokenString(x)==“honda”
TokenString(x)==“interfax”
TokenString(x)==“marseille”

Organization

Table 8: Seed logical rules for CoNLL2003 dataset.

respectively.

A.8 Iterations vs. Performance
Figure 4 and Figure 5 show the performance vs. iter-
ations on CHEMDNER and CoNLL 2003 dataset.

Condition Label

TokenString(x)==“glucose”
TokenString(x)==“oxygen”
TokenString(x)==“cholesterol”
TokenString(x)==“glutathione”
TokenString(x)==“ethanol”
TokenString(x)==“ca ( 2 + )”
TokenString(x)==“calcium”
TokenString(x)==“androgen”
TokenString(x)==“copper”
TokenString(x)==“graphene”
TokenString(x)==“glutamate”
TokenString(x)==“dopamine”
TokenString(x)==“cocaine”
TokenString(x)==“cadmium”
TokenString(x)==“serotonin”
TokenString(x)==“estrogen”
TokenString(x)==“nicotine”
TokenString(x)==“tyrosine”
TokenString(x)==“resveratrol”
TokenString(x)==“nitric oxide”
TokenString(x)==“cisplatin”
TokenString(x)==“alcohol”
TokenString(x)==“superoxide”
TokenString(x)==“curcumin”
TokenString(x)==“( 1 ) h”
TokenString(x)==“metformin”
TokenString(x)==“amino acid”
TokenString(x)==“arsenic”
TokenString(x)==“zinc”
TokenString(x)==“testosterone”
TokenString(x)==“flavonoids”
TokenString(x)==“camp”
TokenString(x)==“methanol”
TokenString(x)==“amino acids”
TokenString(x)==“mercury”
TokenString(x)==“fatty acids”
TokenString(x)==“polyphenols”
TokenString(x)==“nmda”
TokenString(x)==“silica”
TokenString(x)==“5 - ht”

Chemical

Table 9: Seed logical rules for CHEMDNER dataset.


