@inproceedings{paul-frank-2021-coins,
title = "{COINS}: Dynamically Generating {CO}ntextualized Inference Rules for Narrative Story Completion",
author = "Paul, Debjit and
Frank, Anette",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.395",
doi = "10.18653/v1/2021.acl-long.395",
pages = "5086--5099",
abstract = "Despite recent successes of large pre-trained language models in solving reasoning tasks, their inference capabilities remain opaque. We posit that such models can be made more interpretable by explicitly generating interim inference rules, and using them to guide the generation of task-specific textual outputs. In this paper we present Coins, a recursive inference framework that i) iteratively reads context sentences, ii) dynamically generates contextualized inference rules, encodes them, and iii) uses them to guide task-specific output generation. We apply to a \textit{Narrative Story Completion} task that asks a model to complete a story with missing sentences, to produce a coherent story with plausible logical connections, causal relationships, and temporal dependencies. By modularizing inference and sentence generation steps in a recurrent model, we aim to make reasoning steps and their effects on next sentence generation transparent. Our automatic and manual evaluations show that the model generates better story sentences than SOTA baselines, especially in terms of coherence. We further demonstrate improved performance over strong pre-trained LMs in generating commonsense inference rules. The recursive nature of holds the potential for controlled generation of longer sequences.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paul-frank-2021-coins">
<titleInfo>
<title>COINS: Dynamically Generating COntextualized Inference Rules for Narrative Story Completion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Debjit</namePart>
<namePart type="family">Paul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anette</namePart>
<namePart type="family">Frank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Despite recent successes of large pre-trained language models in solving reasoning tasks, their inference capabilities remain opaque. We posit that such models can be made more interpretable by explicitly generating interim inference rules, and using them to guide the generation of task-specific textual outputs. In this paper we present Coins, a recursive inference framework that i) iteratively reads context sentences, ii) dynamically generates contextualized inference rules, encodes them, and iii) uses them to guide task-specific output generation. We apply to a Narrative Story Completion task that asks a model to complete a story with missing sentences, to produce a coherent story with plausible logical connections, causal relationships, and temporal dependencies. By modularizing inference and sentence generation steps in a recurrent model, we aim to make reasoning steps and their effects on next sentence generation transparent. Our automatic and manual evaluations show that the model generates better story sentences than SOTA baselines, especially in terms of coherence. We further demonstrate improved performance over strong pre-trained LMs in generating commonsense inference rules. The recursive nature of holds the potential for controlled generation of longer sequences.</abstract>
<identifier type="citekey">paul-frank-2021-coins</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.395</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.395</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>5086</start>
<end>5099</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T COINS: Dynamically Generating COntextualized Inference Rules for Narrative Story Completion
%A Paul, Debjit
%A Frank, Anette
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F paul-frank-2021-coins
%X Despite recent successes of large pre-trained language models in solving reasoning tasks, their inference capabilities remain opaque. We posit that such models can be made more interpretable by explicitly generating interim inference rules, and using them to guide the generation of task-specific textual outputs. In this paper we present Coins, a recursive inference framework that i) iteratively reads context sentences, ii) dynamically generates contextualized inference rules, encodes them, and iii) uses them to guide task-specific output generation. We apply to a Narrative Story Completion task that asks a model to complete a story with missing sentences, to produce a coherent story with plausible logical connections, causal relationships, and temporal dependencies. By modularizing inference and sentence generation steps in a recurrent model, we aim to make reasoning steps and their effects on next sentence generation transparent. Our automatic and manual evaluations show that the model generates better story sentences than SOTA baselines, especially in terms of coherence. We further demonstrate improved performance over strong pre-trained LMs in generating commonsense inference rules. The recursive nature of holds the potential for controlled generation of longer sequences.
%R 10.18653/v1/2021.acl-long.395
%U https://aclanthology.org/2021.acl-long.395
%U https://doi.org/10.18653/v1/2021.acl-long.395
%P 5086-5099
Markdown (Informal)
[COINS: Dynamically Generating COntextualized Inference Rules for Narrative Story Completion](https://aclanthology.org/2021.acl-long.395) (Paul & Frank, ACL-IJCNLP 2021)
ACL