@inproceedings{schumann-riezler-2021-generating,
title = "Generating Landmark Navigation Instructions from Maps as a Graph-to-Text Problem",
author = "Schumann, Raphael and
Riezler, Stefan",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.41",
doi = "10.18653/v1/2021.acl-long.41",
pages = "489--502",
abstract = "Car-focused navigation services are based on turns and distances of named streets, whereas navigation instructions naturally used by humans are centered around physical objects called landmarks. We present a neural model that takes OpenStreetMap representations as input and learns to generate navigation instructions that contain visible and salient landmarks from human natural language instructions. Routes on the map are encoded in a location- and rotation-invariant graph representation that is decoded into natural language instructions. Our work is based on a novel dataset of 7,672 crowd-sourced instances that have been verified by human navigation in Street View. Our evaluation shows that the navigation instructions generated by our system have similar properties as human-generated instructions, and lead to successful human navigation in Street View.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schumann-riezler-2021-generating">
<titleInfo>
<title>Generating Landmark Navigation Instructions from Maps as a Graph-to-Text Problem</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raphael</namePart>
<namePart type="family">Schumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Riezler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Car-focused navigation services are based on turns and distances of named streets, whereas navigation instructions naturally used by humans are centered around physical objects called landmarks. We present a neural model that takes OpenStreetMap representations as input and learns to generate navigation instructions that contain visible and salient landmarks from human natural language instructions. Routes on the map are encoded in a location- and rotation-invariant graph representation that is decoded into natural language instructions. Our work is based on a novel dataset of 7,672 crowd-sourced instances that have been verified by human navigation in Street View. Our evaluation shows that the navigation instructions generated by our system have similar properties as human-generated instructions, and lead to successful human navigation in Street View.</abstract>
<identifier type="citekey">schumann-riezler-2021-generating</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.41</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.41</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>489</start>
<end>502</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Landmark Navigation Instructions from Maps as a Graph-to-Text Problem
%A Schumann, Raphael
%A Riezler, Stefan
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F schumann-riezler-2021-generating
%X Car-focused navigation services are based on turns and distances of named streets, whereas navigation instructions naturally used by humans are centered around physical objects called landmarks. We present a neural model that takes OpenStreetMap representations as input and learns to generate navigation instructions that contain visible and salient landmarks from human natural language instructions. Routes on the map are encoded in a location- and rotation-invariant graph representation that is decoded into natural language instructions. Our work is based on a novel dataset of 7,672 crowd-sourced instances that have been verified by human navigation in Street View. Our evaluation shows that the navigation instructions generated by our system have similar properties as human-generated instructions, and lead to successful human navigation in Street View.
%R 10.18653/v1/2021.acl-long.41
%U https://aclanthology.org/2021.acl-long.41
%U https://doi.org/10.18653/v1/2021.acl-long.41
%P 489-502
Markdown (Informal)
[Generating Landmark Navigation Instructions from Maps as a Graph-to-Text Problem](https://aclanthology.org/2021.acl-long.41) (Schumann & Riezler, ACL-IJCNLP 2021)
ACL