
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5399–5411

August 1–6, 2021. ©2021 Association for Computational Linguistics

5399

On Sample Based Explanation Methods for NLP:
Efficiency, Faithfulness, and Semantic Evaluation

Wei Zhang ∗
Wayfair

Boston MA, USA
wzhang5@wayfair.com

Ziming Huang ∗
Sogou Inc

Beijing, China
hzmyouxiang@gmail.com

Yada Zhu
MIT-IBM Watson AI Lab
IBM Research, NY, USA
yzhu@us.ibm.com

Guangnan Ye
IBM Research

New York, USA
gye@us.ibm.com

Xiaodong Cui
IBM Research

New York, USA
xcui@us.ibm.com

Fan Zhang
IBM Data and AI

Littleton MA, USA
fzhang@us.ibm.com

Abstract

In the recent advances of natural language pro-
cessing, the scale of the state-of-the-art models
and datasets is usually extensive, which chal-
lenges the application of sample-based expla-
nation methods in many aspects, such as ex-
planation interpretability, efficiency, and faith-
fulness. In this work, for the first time, we
can improve the interpretability of explana-
tions by allowing arbitrary text sequences as
the explanation unit. On top of this, we im-
plement a hessian-free method with a model
faithfulness guarantee. Finally, to compare
our method with the others, we propose a
semantic-based evaluation metric that can bet-
ter align with humans’ judgment of explana-
tions than the widely adopted diagnostic or re-
training measures. The empirical results on
multiple real data sets demonstrate the pro-
posed method’s superior performance to pop-
ular explanation techniques such as Influence
Function or TracIn on semantic evaluation.

1 Introduction

As complex NLP models such as the Transformers
family (Vaswani et al., 2017; Devlin et al., 2019)
become an indispensable tool in many applications,
there are growing interests to explain the working
mechanism of these “black-box” models. Among
the vast of existing techniques for explaining ma-
chine learning models, Influence Functions (Ham-
pel, 1974; Koh and Liang, 2017) that uses training
instances as explanations to a model’s behavior
have gained popularity in NLP very recently. Dif-
ferent from other methods such as using input era-
sure (Li et al., 2016), saliency maps or attention ma-
trices (Serrano and Smith, 2019; Jain and Wallace,
2019; Wiegreffe and Pinter, 2019) that only look at

∗Equal Contribution. Wei Zhang did the work while being
a research scientist at IBM T.J. Watson Research Center at
Yorktown Heights, NY, USA; Ziming Huang was a research
scientist at IBM Research Lab at Beijing, China.

how a specific input or input sequence impacts the
model decision, explaining with training instances
can cast light on the knowledge a model has en-
coded about a problem, by answering questions
like ’what knowledge did the model capture from
which training instances so that it makes decision
in such a manner during test?’. Very recently, the
method has been applied to explain BERT-based
(Devlin et al., 2019) text classification (Han et al.,
2020; Meng et al., 2020b) and natural language
inference (Han et al., 2020) models, as well as to
aid text generation for data augmentation (Yang
et al., 2020a) using GPT-2 (Radford et al., 2019).
Although useful, Influence Function may not be
entirely bullet-proof for NLP applications.

First, following the original formulation (Koh
and Liang, 2017), the majority of existing works
use entire training instances as explanations. How-
ever, for long natural language texts that are com-
mon in many high-impact application domains
(e.g., healthcare, finance, or security), it may be
difficult, if not impossible, to comprehend an entire
instance as an explanation. For example, a model’s
decision may depend only on a specific part of a
long training instance.

Second, for modern NLP models and large-scale
datasets, the application of Influence Functions can
lead to prohibitive computing costs due to inverse
Hessian matrix approximation. Although hessian-
free influence score such as TracIn (Pruthi et al.,
2020b) was introduced very recently, it may not
be faithful to the model in question and can result
in spurious explanations for the involvement of
sub-optimal checkpoints.

Last, the evaluation of explanation methods, in
particular, for the training-instance-based ones, re-
mains an open question. Previous evaluation is
either under an over-simplified assumption on the
agreement of labels between training and test in-
stances (Hanawa et al., 2020; Han et al., 2020) or

5400

is based on indirect or manual inspection (Hooker
et al., 2019; Meng et al., 2020b; Han et al., 2020;
Pruthi et al., 2020a). A method to automatically
measure the semantic relations at scale and that
highly correlates to human judgment is still miss-
ing in the evaluation toolset.

To address the above problems, we propose a
framework to explain model behavior that includes
both a set of new methods and a new metric that
can measure the semantic relations between the
test instance and its explanations. The new method
allows for arbitrary text spans as the explanation
unit and is Hessian-free while being faithful to the
final model. Our contributions are:

1. We propose a new explanation framework that
can use arbitrary explanation units as explana-
tions and be Hessian-free and faithful at the
same time;

2. A new metric to measure the semantic related-
ness between a test instance and its explana-
tion for BERT-based deep models.

2 Preliminaries

Suppose a model parameterized by θ̂ is trained
on classification dataset D = {Dtrain, Dtest} by
empirical risk minimization over Dtrain. Let z =
(x, y) ∈ Dtrain and z′ = (x′, y′) ∈ Dtest denote a
training and a test instance respectively, where x
is a token sequence, and y is a scalar. The goal of
training instance based explanation is to provide for
a given test z′ an ordered list of training instances
as explanation. Two notable methods to calculate
the influence score are IF and TracIn:
IF (Koh and Liang, 2017) assumes the influ-

ence of z can be measured by perturbing the loss
function L with a fraction of the loss on z, and
obtain

Ipert,loss(z, z
′; θ̂)

= −∇θL(z′, θ̂)H−1θ̂ ∇θL(z, θ̂),
(1)

where H is the Hessian matrix calculated on the
entire training dataset, a potential computation bot-
tleneck for large dataset D and complex model
with high dimensional θ̂.
TracIn (Pruthi et al., 2020b) instead assumes

the influence of a training instance z is the sum of
its contribution to the overall loss all through the

entire training history, and conveniently it leads to

TracIn(z, z′) =∑
i

ηi∇θ̂iL(θ̂i, z)∇θ̂iL(θ̂i, z
′), (2)

where i iterates through the checkpoints saved at
different training steps and ηi is a weight for each
checkpoint. TracIn does not involve Hessian ma-
trix and more efficient to compute. We can summa-
rize the key differences between them according to
the following desiderata of an explanation method:

Efficiency for each z′, TracIn requiresO(CG)
where C is the number of models and G is the
time spent for gradient calculation; whereas IF
needs O(N2G) where N is the number of training
instances, and N >> C in general. 1

Faithfulness IF is faithful to θ̂ since all its calcu-
lation is based on a single final model, yet TracIn
may be less faithful to θ̂ since it obtains gradients
from a set of checkpoints 2.

Interpretability Both methods use the entire
training instance as an explanation. Explanations
with a finer-grained unit, e.g., phrases, may be eas-
ier to interpret in many applications where the texts
are lengthy.

3 Proposed Method

To improve on the above desiderata, a new method
should be able to: 1) use any appropriate granu-
larity of span(s) as the explanation unit; 2) avoid
the need of Hessian while maintaining faithfulness.
We discuss the solutions for both in Section 3.1
and 3.2, and combine them into one formation in
Section 3.3 followed by critical implementation
details.

3.1 Improved Interpretability with Spans

To achieve 1), we first start with influence functions
(Koh and Liang, 2017) and consider an arbitrary
span of training sequence x to be evaluated for the
qualification as explanation 3. Our core idea is to
see how the model loss on test instance z′ changes

1some approximation such as hessian-inverse-vector-
product (Baydin et al., 2016) may improve efficiency to
O(NSG) where S is the approximation step and S < N

2We may say TracIn is faithful to the data rather than to
the model. And in the case where checkpoint averaging can
be used as model prediction, the number of checkpoints may
be too few to justify Eq. 2.

3the method can be trivially generalized to multiple spans

5401

with the training span’s importance. The more
important a training span is to z′, the greater this
influence score should be. We derive it in three
following steps.

First, we define the training span from
token i to token j to be xij , and the
sequence with xij masked is x−ij =
[x0, ..., xi−1, [MASK], ..., [MASK], xj+1, ...]
and its corresponding training data is z−ij .
We use logit difference (Li et al., 2020) as
importance score based on the empirical-risk-
estimated parameter θ̂ obtained from Dtrain as:
imp(xij |z, θ̂) = logity(x; θ̂) − logity(x−ij ; θ̂),
where every term in the right hand side (RHS) is
the logit output evaluated at a model prediction y
from model θ̂ right before applying the SoftMax
function. This equation tells us how important
a training span is. It is equivalent to the loss
difference

imp(xij |z; θ̂) = L(z−ij ; θ̂)− L(z; θ̂), (3)

when the cross entropy loss L(z; θ) =
−
∑

yi
I(y = yi)logityi(x; θ) is applied.

Then, we measure xij’s influence on model
θ̂ by adding a fraction of imp(xij |z; θ̂) scaled
by a small value ε to the overall loss and ob-
tain θ̂ε,xij |z := argminθEzi∈Dtrain [L(zi, θ)] +
εL(z−ij ; θ)− εL(z; θ). Applying the classical re-
sult in (Cook and Weisberg, 1982; Koh and Liang,
2017), the influence of up-weighing the importance
of xij on θ̂ is

dθ̂ε,xij |z

dε

∣∣∣
ε=0

=

H−1
θ̂

(∇θ̂L(z; θ̂)−∇θ̂L(z−ij ; θ̂)).

Finally, applying the above equation and the
chain rule, we obtain the influence of xij to z′

as:

IF+(xij |z, z′; θ̂) := ∇εL(z′; θ̂ε,xij |z)|ε=0

= ∇θL(z′; θ̂)H−1θ̂ (∇θL(z; θ̂)−∇θL(z−ij ; θ̂)).

IF+ measures the influence of a training span on
an entire test sequence. Similarly, we also measure
the influence of a training span to a test span x′kl
by applying Eq. 3 and obtain

IF++(xij |z,x′kl|z′; θ̂)
:=∇εL(z′−kl; θ̂ε,xij |z)−∇εL(z

′; θ̂ε,xij |z)|ε=0

=(∇θL(z′−kl; θ̂)−∇θL(z′; θ̂))
H−1
θ̂

(∇θL(z; θ̂)−∇θL(z−ij ; θ̂)).

The complete derivation can be found in Appendix.

On the choice of Spans Theoretically, IF+ and
IF++ can be applied to any text classification prob-
lem and dataset with an appropriate choice of the
span. If no information about valid span is avail-
able, shallow parsing tools or sentence split-tools
can be used to shatter an entire text sequence into
chunks, and each chunk can be used as span can-
didates. In this situation, the algorithm can work
in two steps: 1) using masking method (Li et al.,
2020) to determine the important test spans; and
2) for each span we apply IF++ to find training
instances/spans as explanations.

Usually, we can choose top-K test spans, and
even can choose K=1 in some cases. In this work,
we look at the later case without loss of gener-
ality, and adopt two aspect-based sentiment anal-
ysis datasets that can conveniently identify a de-
terministic span in each text sequence, and frame
the span selection task as a Reading Comprehen-
sion task (Rajpurkar et al., 2016). We discuss
the details in Section 5. Note that the discus-
sion can be trivially generalized to the case where
K>1 using Bayesian approach such as imp(xij) =
EP (x′kl)

[imp(xij |xkl)′] which can be explored in
future work.

3.2 Faithful & Hessian-free Explanations

To achieve 2), we would start with the method of
TracIn (Pruthi et al., 2020b) described in Eq. 2
which is Hessian free by design. TracIn defines
the contribution of a training instance to be the
sum of its contribution (loss) throughout the entire
training life cycle, which eradicated the need for
Hessian. However, this assumption is drastically
different from IF’s where the contribution of z is
obtained solely from the final model θ̂. By nature,
IF is a faithful method, and its explanation is faith-
ful to θ̂, and TracIn in its vanilla form is arguably
not a faithful method.

Proposed treatment Based on the assumption
that the influence of z on θ̂ is the sum of influ-
ences of all variants close to θ̂, we define a set
of “faithful” variants satisfying the constraint of
{θ̂i|1 > δ >> ||θ̂i − θ̂||2}, namely δ-faithful to
θ̂. The smaller δ is, the more faithful the explana-
tion method is. Instead, the δ for TracIn can be
arbitrary large without faithfulness guarantees, as
some checkpoints can be far from the final θ̂. Thus,
we construct a δ-faithful explanation method that

5402

mirrors TracIn as:

TracInF(z, z′) =∑
i

∇θ̂+δiL(θ̂ + δi, z)∇θ̂+δiL(θ̂ + δi, z
′).

The difference between TracIn and TracInF is
that the checkpoints used in TracIn are correlated
in time whereas all variants of TracInF are con-
ditionally independent. Finding a proper δi can be
tricky. If ill-chosen, δi may diverge θ̂ so much that
hurts gradient estimation. In practice, we estimate
δi = ηig(zi|θ̂) obtained from a single-step gradient
descent g(zi|θ̂) with some training instance zi on
model θ̂, scaled by an i-specific weighting parame-
ter ηi, which in the simplest case is uniform for all
i. Usually ηi should be small enough so that θ̂+ δi
can stay close to θ̂. In this paper we set η as the
model learning rate for proof of concept.

Is TracInF faithful? First, any θ̂ + δi is close
to θ̂. Under the assumption of Lipschitz continuity,
there exists a k ∈ R+ such that ∇L(θ̂ + δi, z)
is bounded around ∇L(θ̂, z) by k|ηig2(zi|θ̂)|,
the second derivative, because |∇L(θ̂ + δi, z) −
∇L(θ̂, z)| < k|ηig2(zi|θ̂)|. A proper ηi can be cho-
sen so that the right hand side (RHS) is sufficiently
small to bound the loss within a small range. Thus,
the gradient of loss, and in turn the TracInF score
can stay δ-faithful to θ̂ for an sufficiently small δ,
which TracIn can not guarantee.

3.3 The Combined Method
By combining the insights from Section 3.1 and
3.2, we obtain a final form named TracIn++:

TracIn++(x′kl|z′, xij |z; θ̂) =∑
i

[
∇L(θ̂ + δi, z

′
−kl)−∇L(θ̂ + δi, z

′)
]

[
∇L(θ̂ + δi, z)−∇L(θ̂ + δi, z−ij)

]
.

This ultimate form mirrors the IF++ method, and
it satisfies all of our desiderata on an improved
explanability method. Similarly, TracIn+ that
mirrors IF+ is

TracIn+(z′, xij |z; θ̂) =
∑
i

∇L(z′; θ̂ + δi)[
∇L(θ̂ + δi, z)−∇L(θ̂ + δi, z−ij)

]
.

3.4 Additional Details
Since the RHS of IF, IF+ and IF++ equations
all involve the inverse of Hessian Matrix, here

we discuss the computation challenge. Follow-
ing (Koh and Liang, 2017), we adopt the vector-
Hessian-inverse-product (VHP) with stochastic
estimation (Baydin et al., 2016). The series
of stochastic updates, one for each training in-
stance, is performed by the vhp() function in the
torch.autograd.functional package and
the update stops until convergence. Unfortunately,
we found that naively applying this approach leads
to VHP explosion due to large parameter size. To
be specific, in our case, the parameters are the last
two layers of RoBERTa-large (Liu et al., 2019)
plus the output head, a total of 12M parameters per
gradient vector. To stabilize the process, we take
three approaches: 1) applying gradient clipping (set
to 100) to avoid accumulating the extreme gradi-
ent values; 2) adopting early termination when the
norm of VHP stabilizes (usually < 1000 training
instances, i.e., the depth); and 3) slowly decaying
the accumulated VHP with a factor of 0.99 (i.e.,
the damp) and update with a new vhp() estimate
with a small learning rate (i.e., the scale) of 0.004.
Please refer to our code for more details. Once
obtained, the VHP is first cached and then retrieved
to perform the dot-product with the last term. The
complexity for each test instance is O(dt) where
d is the depth of estimation and t is the time spent
on each vhp() operation. The time complexity of
different IF methods only vary on a constant factor
of two.

For each of TracIn, TracIn+ and
TracIn++, we need to create multiple model
variants. For TracIn, we save three checkpoints
of the most recent training epochs; For TracIn+

or TracIn++, we start with the same checkpoint
and randomly sample a mini-batch 3 times and
perform one-step training (learning rate 1E-4) for
each selection to obtain three variants. We do not
over-tune those hyper-parameters for replicability
concerns.

4 Evaluation Metrics

This section introduces our semantic evaluation
method, followed by a description of two other
popular metrics for comparison.

4.1 Semantic Agreement (Sag)

Intuitively, a rational explanation method should
rank explanations that are semantically related to
the given test instance relatively higher than the
less relevant ones. Our idea is to first define the

5403

semantic representation of a training span xij of z
and measure its similarity to that of a test span x′kl
of z′. Since our method uses BERT family as the
base model, we obtain the embedding of a training
span by the difference of x and its span-masked
version xij as

emb(xij) = emb(x)− emb(x−ij), (4)

where emb is obtained from the embedding of sen-
tence start token such as “[CLS]” in BERT (Devlin
et al., 2019) at the last embedding layer. To obtain
embedding of the entire sequence we can simply
use the emb(x) without the last term in Eq. 4.
Thus, all spans are embedded in the same semantic
space and the geometric quantities such as cosine
or dot-product can measure the similarities of em-
beddings. We define the semantic agreement Sag
as:

Sag(z′, {z}|K1) =

1

K

∑
z

cos(emb(xij |z), emb(x′kl|z′)),
(5)

Intuitively, the metric measures the degree to which
top-K training spans align with a test span on se-
mantics.

4.2 Other metrics
Label Agreement (Lag) label agreement
(Hanawa et al., 2020) assumes that the label of
an explanation z should agree with that of the
text case z′. Accordingly, we retrieve the top-K
training instances from the ordered explanation
list and calculate the label agreement (Lag) as
follows:

Lag(z′, {z}|N1) =
1

K

∑
k∈[1,K]

I(y′ == yk),

where I(·) is an indicator function. Lag measures
the degree to which the top-ranked z agree with z′

on class label, e.g., if the sentiment of the test z′

and explanation z agree.

Re-training Accuracy Loss (Ral) Ral mea-
sures the loss of test accuracy after removing the
top-K most influential explanations identified by an
explanation method (Hanawa et al., 2020; Hooker
et al., 2019; Han et al., 2020). The assumption is
that the higher the loss the better the explanation
method is. Formally,

Ral(f, θ̂) = Acc(θ̂)−Acc(θ̂′),

where θ̂′ is the model re-trained by the set
Dtrain/{z}|K1 . Notice the re-training uses the
same set of hyper-parameter settings as training
(Section 6.1). To obtain {z}|K1 , we combine the
explanation lists for all test instances (by score ad-
dition) and then remove the top-K from this list.

5 Data

Our criteria for dataset selection are two folds: 1.
The dataset should have relatively high classifi-
cation accuracy so that the trained model can be-
have rationally; and 2. The dataset should allow
for easy identification of critical/useful text spans
to compare span-based explanation methods. We
chose two aspect-based sentiment analysis (ABSA)
datasets; one is ATSA, a subset of MAMS (Jiang
et al., 2019) for product reviews, where aspects
are the terms in the text. The other is sentihood
(Saeidi et al., 2016) of location reviews. We can
identify the relevant span of an aspect term semi-
automatically and train models with high classifica-
tion accuracy in both datasets. (see Section 6.1 for
details). Data statistics and instances are in Table 1
and 2.

Train Dev Test
MAMS 11186 1332 1336

sentihood 2977 747 1491

Table 1: Data Statistics. Note that we regard each train-
ing instance as aspect-specific, i.e., the concatenation
of aspect term and the text x as model input.

Automatic Span Annotation As shown in the
colored text in Table 2, we extract the spans for
each term to serve as explanation units for IF+,
IF++, TracIn+ and TracIn++. To reduce an-
notation effort, we convert span extraction into a
question answering task (Rajpurkar et al., 2016)
where we use aspect terms to formulate questions
such as “How is the service?” which concatenates
with the text before being fed into pre-trained ma-
chine reading comprehension (RC) models. The
output answer is used as the span. When the RC
model fails, we use heuristics to extract words be-
fore and after the term word, up to the closest sen-
tence boundary. See appendix for more details. We
sampled a subset of 100 annotations and found that
the RC model has about 70% of Exact Match (Ra-
jpurkar et al., 2016) and the overall annotation has
a high recall of over 90% but low EM due to the
involvement of heuristics.

5404

Dataset Text Aspect Sentiment

MAMS
the service was impeccable, the menu traditional but inven-
tive and presentation for the most part excellent but the food
itself came up short.

service +
menu +
food -

sentihood i live in location2 and i love it location1 just stay away from
location1 lol.

location1 -
location2 +

Table 2: Dataset instances. In text, each aspect has a supporting span which we annotate semi-automatically. We
choose a subset where test instances

(Not) Mitigating the Annotation Error
Wrongly-annotated spans may confuse the
explanation methods. For example, as shown in
2, if the span of location2 is annotated as “I love
it”, span-based explanation methods will use it
to find wrong examples for explanation. Thus
test instances with incorrectly annotated spans
are omitted, i.e., no tolerance to annotation error
for test instances. To the contrary, for training
instances, we do not correct the annotation error.
The major reason is the explanation methods have
a chance to rank the wrongly annotated spans
lower (its importance score imp() of Eq. 3 can be
lower and in turn for its influence scores.) Also, It
is labor-intensive to do so.

6 Experiments

6.1 Model Training Details

We train two separate models for MAMS and
sentihood. The model’s input is the concatena-
tion of the aspect term and the entire text, and
the output is a sentiment label. The two mod-
els share similar settings: 1. they both use
ROBERTA-LARGE (Liu et al., 2019) from Hug-
gingface (Wolf et al., 2019) which is fed into the
BertForSequenceClassification func-
tion for initialization. We fine-tune the parameters
of the last two layers and the output head using a
batch size of 200 for ATSA and 100 for sentihood
and max epochs of 100. We use AdamW opti-
mizer (Loshchilov and Hutter, 2019) with weight
decay 0.01 and learning rate 1E-4. Both models
are written in Pytorch and are trained on a single
Tesla V100 GPU and took less than 2 hours for
each model to train. The models are selected on
dev set performance, and both trained models are
state-of-the-art: 88.3% on MAMS and 97.6% for
sentihood at the time of writing.

6.2 Comparing Explanation Methods

We compare the six explanation methods on two
datasets and three evaluation metrics in Table 3
from which we can draw the following conclusions:

1) TracIn family outperforms IF family ac-
cording to Sag and Lag metrics. We see that both
metrics are robust against the choice of K. It it
worth noting that TracIn family methods are not
only efficient, but also effective for extracting ex-
planations compared to IF family as per Sag and
Lag.

2) Span-based methods (with +) outperform
Vanilla methods (w/o +). It is good news because
an explanation can be much easier to comprehend if
we can highlight essential spans in text, and IF++

and TracIn++ shows us that such highlighting
can be justified by their superiority on the evalua-
tion of Sag and Lag.

3) Sag and Lag shows a consistent trend of
TracIn++ and IF++ being superior to the rest
of the methods, while Ral results are inconclusive,
which resonates with the findings in (Hooker et al.,
2019) where they also observed randomness af-
ter removing examples under different explanation
methods. This suggests that the re-training method
may not be a reliable metric due to the random-
ness and intricate details involved in the re-training
process.

4) The Sagmeasures TracIn+ differently than
Lag shows that Lag may be an over-simplistic
measure by assuming that label y can represent the
entire semantics of x, which may be problematic.
But Sag looks into the x for semantics and can
properly reflect and align with humans judgments.

The Impact of K on Metrics One critical param-
eter for evaluation metrics is the choice of K for
Sag and Lag (We do not discuss K for Ral due
to its randomness). Here we use 200 MAMS test
instances as subjects to study the influence of K, as
shown in Figure 1.

5405

IF IF+ IF++ TracInF TracIn+ TracIn++

Faithful to θ̂? X X X X X X
Hessian-free? 7 7 7 X X X

Interpretable explanations? 7 X XX 7 X XX

MAMS

Sag(K=10) 14.22 17.17 21.74 15.89 22.65 23.92
Sag(K=100) 14.65 15.10 19.83 15.97 19.54 21.32
Lag(K=10) 21.63 25.66 65.41 38.20 08.60 78.03
Lag(K=100) 26.07 25.66 62.52 43.19 06.27 75.02
Ral(- top 20%) 09.80 05.64 03.55 09.80 11.89 16.05
Ral(- top 50%) 28.55 01.47 18.14 22.30 05.64 18.14

sentihood

Sag(K=10) 04.69 04.75 22.54 03.07 00.98 26.21
Sag(K=50) 03.56 07.82 22.21 01.78 01.61 23.43
Lag(K=10) 53.00 41.91 61.96 55.91 18.22 66.65
Lag(K=50) 56.38 44.05 63.16 59.66 17.49 66.72
Ral(- top 20%) 10.56 16.21 06.91 09.23 06.91 09.23
Ral(- top 50%) 16.21 18.53 11.05 27.83 9.23 4.58

Table 3: Performance of difference explanation methods on 200 test cases on each dataset. For Sag and Lag
we set K ∈ {10, 100}; for Ral we set K ∈ {20%, 50%}, and Ral we consider removing the top 20% or 50%
from the ordered training instance list. Computation time for IF family is about 20 minutes per test instance with
recursion depth 1000 (the minimal value to guarantee convergence) on a Tesla V100 GPU. The time for TracIn
family only depends on gradient calculation, which is trivial compared to IF family.

We found that as K increases, all methods, ex-
cept for IF and TracInF, decrease on Sag and
Lag. The decrease is favorable because the expla-
nation method is putting useful training instances
before less useful ones. In contrast, the increase
suggests the explanation method fails to rank use-
ful ones on top. This again confirms that span-
based explanation can take into account the useful
information in x and reduce the impact of noisy
information involved in IF and TracInF.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

10 20 30 40 50 60 70 80 90 100

MAMS on Sag

IF IF+ IF++

TracInF TracIn+ TracIn++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70 80 90 100

MAMS on Lag

IF IF+ IF++

TracInF TracIn+ TracIn++

Figure 1: Sag and Lag v.s. K values on 200 MAMS
test instances.

6.3 Comparing Faithfulness

How faithful our proposed TracIn++ to θ̂? To
answer this question, we first define the notion of
strictly faithful explanation and then test an ex-
planation method’s faithfulness against it. Note
that none of the discussed methods is strictly
faithful, since IF++ used approximated inverse-
Hessian and TracIn++ is a δ away from being
strictly faithful. To obtain ground truth, we mod-
ify TracIn++ to use a single checkpoint θ̂ as the
“ultimately faithful” explanation method 4. Then,
we obtain an explanation list for each test instance
and compute its Spearman Correlation with the list
obtained from the ground truth. The higher the
correlation, the more faithful the method is.

In Table 4 we discovered that TracIn++ has
similar mean as IF++ but has a much lower vari-
ance, showing its stability over IF++. This aligns
with the finding of Basu et al. (2021) which ar-
gues that in deep non-convex networks, influence
function usually is non-stable across test instances.
TracIn family arguably may be a promising di-
rection to stability. Both methods are more faithful
to Ground truth than Control that uses checkpoints,

4The choice of ground truth can also be the exact computa-
tion of inverse-Hessian in IF (our future work). Faithfulness
does not equal to correctness; there is no guarantee the ground
truth is a valid explanation method, but it can be a valid bench-
mark for faithfulness

5406

Spearman
Method Mean Var.
Control 55.11 4.84

TracIn++ 60.14 3.57
IF++ 59.37 20.50

Table 4: Comparison of Correlation with Ground truth.
The experiment is run 5 times each; “Control” is only
different from TracIn++ on the models used: “con-
trol” uses three checkpoints of the latest epochs, but
TracIn++ uses three δ-faithful model variants.

showing that the model “ensemble” around θ̂ may
be a better choice than “checkpoint averaging” for
model explanations. Further explorations may be
needed since there are many variables in this com-
parison.

7 A Case Study

Table 5 demonstrate the differences of explanation
methods. In action, TracIn++ shows both the
test span and explanation span to a user; TracIn+

shows only the training span, and TracIn does
not show spans. Interestingly we can observe the
top-1 explanation found by TracIn++ is more
semantically related than others in the example, a
common pattern among the test cases.

8 Related Work

Popular explanation methods include gradient-
based (Sundararajan et al., 2017), attention-based
(Clark et al., 2019; Jain and Wallace, 2019; Wiegr-
effe and Pinter, 2019), as well as sample-based
(Koh and Liang, 2017; Yeh et al., 2018; Pruthi
et al., 2020b) methods.

Major Progress on Sample-based Explanation
Methods There have been a series of recent ef-
forts to explain black-box deep neural nets (DNN),
such as LIME (Ribeiro et al., 2016) that approxi-
mates the behavior of DNN with an interpretable
model learned from local samples around predic-
tion, Influence Functions (Koh and Liang, 2017;
Koh et al., 2019) that picks training samples as
explanation via its impact on the overall loss, and
Exemplar Points (Yeh et al., 2018) that can assign
weights to training samples. TracIn (Pruthi et al.,
2020b) is the latest breakthrough that overcomes
the computational bottleneck of Influence Func-
tions with the cost of faithfulness.

The Discussion of Explanation Faithfulness in
NLP The issue of Faithfulness of Explanations
was primarily discussed under the explanation gen-
eration context (Camburu et al., 2018) where there
is no guarantee that a generated explanation would
be faithful to a model’s inner-workings (Jacovi and
Goldberg, 2020). In this work, we discuss faithful-
ness in the sample-based explanations framework.
The faithfulness to model either can be guaranteed
only in theory but not in practice (Koh and Liang,
2017) or can not be guaranteed at all (Pruthi et al.,
2020b).

Sample-based explanation methods for NLP
Han et al. (2020) applied IF for sentiment analysis
and natural language inference and also studied
its utility on detecting data artefacts (Gururangan
et al., 2019). Yang et al. (2020b) used Influence
Functions to filter the generated texts. The one
closest to our work is (Meng et al., 2020a) where a
single word is used as the explanation unit. Their
formation uses gradient-based methods for single
words, while ours can be applied to any text unit
granularity using text masking.

Explanation of NLP Models by Input Erasure
Input erasure has been a popular trick for measur-
ing input impact for NLP models by replacing input
by zero vector (Li et al., 2016) or by marginaliza-
tion of all possible candidate tokens (Kim et al.,
2020) that arguably dealt with the out of distribu-
tion issue introduced by using zero as input mask.
Similar to (Kim et al., 2020; Li et al., 2020; Jacovi
and Goldberg, 2021) we also use “[MASK]” to-
ken, with the difference that we allow masking of
arbitrary length of an input sequence.

Evaluations of Sample-based Methods A
benchmark of evaluating sample-based explanation
methods has not been agreed upon. For diagnostic
purposes, Koh et al. (2017) proposed a self-
explanation method that uses the training instances
to explain themselves; Hanawa et al. (2020)
proposed the label and instance consistency as a
way of model sanity check. On the non-diagnostic
setting, sample removal and re-training (Han et al.,
2020; Hooker et al., 2019) assumes that removing
useful training instances can cause significant
accuracy loss; input enhancement method assumes
useful explanations can also improve model’s
decision making at model input side (Hao, 2020),
and manual inspections (Han et al., 2020; Meng
et al., 2020a) were also used to examine if the

5407

Test Case been here a few times and food has always been good but service really suffers
when it gets crowded.

+

TracIn++
expected there to be more options for tapas the food was mediocre but the
service was pretty good. +

TracIn+
decor is simple yet functional and although the staff are not the most attentive
in the world, ...

+

TracInF
this place is the tourist fav of chinese food in the city, the service was fast, but
the taste of the food is average, too much starch ...

0

IF++ ... the host was rude to us as we walked in, we stayed because the decor is
charming and we wanted french food.

+

IF+
the scene a dark refurbished dining car hosts plenty of hipsters in carefully
selected thrift-store clothing.

+

IF
an unpretentious sexy atmosphere lends itself to the above average wine-list
and a menu that can stand-up to any other restaurant ...

+

Table 5: Showcasing Top-1 Explanations. Aspect terms are in blue, and the spans are in bold font. TracInF
do not highlight either training or testing span; TracIn+ highlights training span; TracIn++ highlights both
training and test spans. TracIn++ and IF++ can help users understand which span of z influenced which span
of z′, which TracInF and IF do not provide.

meanings of explanations align with that of the test
instance. In this paper, we automate this semantic
examination using the embedding similarities.

9 Future Work

TracIn++ opens some new questions: 1) how
can we generalize TracIn++ to cases where test
spans are unknown? 2) Can we understand the con-
nection between IF and TracInwhich may spark
discoveries on sample-based explanation methods?
3) How can we apply TracIn++ to understand
sequence generation models?

Acknowledgement

This work is supported by the MIT-IBM Watson AI
Lab. The views and conclusions are those of the au-
thors and should not be interpreted as representing
the official policies of the funding agencies. We
thank anonymous reviewers for their valuable feed-
back. We also thank your family for the support
during this special time.

References

Samyadeep Basu, Philip Pope, and Soheil Feizi. 2021.
Influence functions in deep learning are fragile.
ICLR.

Atılım Güneş Baydin, Barak A Pearlmutter, and Jef-
frey Mark Siskind. 2016. Tricks from deep learning.
arXiv preprint arXiv:1611.03777.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language expla-
nations. In NIPS.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of bert’s attention. Black-
BoxNLP, abs/1906.04341.

R Dennis Cook and Sanford Weisberg. 1982. Residu-
als and influence in regression. New York: Chap-
man and Hall.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Suchin Gururangan, Tam Dang, Dallas Card, and
Noah A. Smith. 2019. Variational pretraining for
semi-supervised text classification. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5880–5894, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Frank R Hampel. 1974. The influence curve and its
role in robust estimation. Journal of the american
statistical association, 69(346):383–393.

Xiaochuang Han, Byron C. Wallace, and Yulia
Tsvetkov. 2020. Explaining black box predictions
and unveiling data artifacts through influence func-
tions. In ACL.

https://arxiv.org/pdf/2006.14651.pdf
https://arxiv.org/pdf/1611.03777.pdf
https://papers.nips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://papers.nips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://papers.nips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
http://arxiv.org/abs/1906.04341
http://arxiv.org/abs/1906.04341
https://conservancy.umn.edu/handle/11299/37076
https://conservancy.umn.edu/handle/11299/37076
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1590
https://doi.org/10.18653/v1/P19-1590
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
https://www.aclweb.org/anthology/2020.acl-main.492.pdf
https://www.aclweb.org/anthology/2020.acl-main.492.pdf
https://www.aclweb.org/anthology/2020.acl-main.492.pdf

5408

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and
Kentaro Inui. 2020. Evaluation criteria for
instance-based explanation. arXiv preprint
arXiv:2006.04528.

Yiding Hao. 2020. Evaluating attribution methods us-
ing white-box LSTMs. In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 300–313, On-
line. Association for Computational Linguistics.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans,
and Been Kim. 2019. A benchmark for interpretabil-
ity methods in deep neural networks. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we de-
fine and evaluate faithfulness? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4198–4205, Online. As-
sociation for Computational Linguistics.

Alon Jacovi and Yoav Goldberg. 2021. Aligning
Faithful Interpretations with their Social Attribution.
Transactions of the Association for Computational
Linguistics, 9:294–310.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and
Min Yang. 2019. A challenge dataset and effec-
tive models for aspect-based sentiment analysis. In
EMNLP-IJCNLP, pages 6281–6286.

Siwon Kim, Jihun Yi, Eunji Kim, and Sungroh Yoon.
2020. Interpretation of NLP models through input
marginalization. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3154–3167, Online. As-
sociation for Computational Linguistics.

Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo,
and Percy Liang. 2019. On the accuracy of influ-
ence functions for measuring group effects. CoRR,
abs/1905.13289.

Pang Wei Koh and Percy Liang. 2017. Understand-
ing black-box predictions via influence functions. In
ICML, pages 1885–1894.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. Bert-attack: Adversarial at-
tack against bert using bert. EMNLP.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Fanyu Meng, Junlan Feng, Danping Yin, Si Chen, and
Min Hu. 2020a. A structure-enhanced graph con-
volutional network for sentiment analysis. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 586–595, Online. Associ-
ation for Computational Linguistics.

Yuxian Meng, Chun Fan, Zijun Sun, Eduard Hovy, Fei
Wu, and Jiwei Li. 2020b. Pair the dots: Jointly ex-
amining training history and test stimuli for model
interpretability. arXiv preprint arXiv:2010.06943.

Phiyodr. 2020. roberta-large-finetuned-squad2.
https://huggingface.co/phiyodr/
bart-large-finetuned-squad2. [Online;
accessed 19-Dec-2020].

Danish Pruthi, Bhuwan Dhingra, Livio Baldini Soares,
Michael Collins, Zachary C Lipton, Graham Neubig,
and William W Cohen. 2020a. Evaluating explana-
tions: How much do explanations from the teacher
aid students? arXiv preprint arXiv:2012.00893.

Garima Pruthi, Frederick Liu, Mukund Sundararajan,
and Satyen Kale. 2020b. Estimating training data
influence by tracking gradient descent. In NIPS.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ”why should i trust you?”: Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD
’16, page 1135–1144, New York, NY, USA. Asso-
ciation for Computing Machinery.

Marzieh Saeidi, Guillaume Bouchard, Maria Liakata,
and Sebastian Riedel. 2016. Sentihood: Targeted
aspect based sentiment analysis dataset for urban
neighbourhoods. In COLING.

Sofia Serrano and Noah A. Smith. 2019. Is attention
interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2931–2951, Florence, Italy. Associa-
tion for Computational Linguistics.

https://arxiv.org/pdf/2006.04528.pdf
https://arxiv.org/pdf/2006.04528.pdf
https://doi.org/10.18653/v1/2020.blackboxnlp-1.28
https://doi.org/10.18653/v1/2020.blackboxnlp-1.28
https://proceedings.neurips.cc/paper/2019/file/fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.1162/tacl_a_00367
https://doi.org/10.1162/tacl_a_00367
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://www.aclweb.org/anthology/D19-1654.pdf
https://www.aclweb.org/anthology/D19-1654.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.255
https://doi.org/10.18653/v1/2020.emnlp-main.255
http://arxiv.org/abs/1905.13289
http://arxiv.org/abs/1905.13289
http://proceedings.mlr.press/v70/koh17a/koh17a.pdf
http://proceedings.mlr.press/v70/koh17a/koh17a.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.500.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.500.pdf
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/pdf?id=Bkg6RiCqY7
https://openreview.net/pdf?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.findings-emnlp.52
https://doi.org/10.18653/v1/2020.findings-emnlp.52
https://arxiv.org/pdf/2010.06943.pdf
https://arxiv.org/pdf/2010.06943.pdf
https://arxiv.org/pdf/2010.06943.pdf
https://huggingface.co/phiyodr/bart-large-finetuned-squad2
https://huggingface.co/phiyodr/bart-large-finetuned-squad2
https://arxiv.org/pdf/2012.00893.pdf
https://arxiv.org/pdf/2012.00893.pdf
https://arxiv.org/pdf/2012.00893.pdf
https://proceedings.neurips.cc//paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://proceedings.neurips.cc//paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://www.aclweb.org/anthology/C16-1146.pdf
https://www.aclweb.org/anthology/C16-1146.pdf
https://www.aclweb.org/anthology/C16-1146.pdf
https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.18653/v1/P19-1282

5409

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. CoRR,
abs/1703.01365.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11–20, Hong Kong, China. Associ-
ation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. arXiv preprint arXiv:1910.03771.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping
Wang, Chandra Bhagavatula, Yejin Choi, and Doug
Downey. 2020a. G-daug: Generative data augmen-
tation for commonsense reasoning. arXiv preprint
arXiv:2004.11546.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping
Wang, Chandra Bhagavatula, Yejin Choi, and Doug
Downey. 2020b. Generative data augmentation for
commonsense reasoning. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 1008–1025, Online. Association for Computa-
tional Linguistics.

Chih-Kuan Yeh, Joon Sik Kim, Ian E.H. Yen, and
Pradeep Ravikumar. 2018. Representer point selec-
tion for explaining deep neural networks. In NIPS.

http://arxiv.org/abs/1703.01365
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://arxiv.org/pdf/1910.03771.pdf
https://arxiv.org/pdf/1910.03771.pdf
https://arxiv.org/pdf/1910.03771.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.90
https://doi.org/10.18653/v1/2020.findings-emnlp.90
https://proceedings.neurips.cc/paper/2018/file/8a7129b8f3edd95b7d969dfc2c8e9d9d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8a7129b8f3edd95b7d969dfc2c8e9d9d-Paper.pdf

5410

A Span extraction details

The model we apply the huggingface (Wolf et al., 2019) pre-trained RC model “phiyodr/roberta-large-
finetuned-squad2” (Phiyodr, 2020) which is chosen based on our comparison to a set of similar models
on SQuAD 2.0 dataset. We use the SQuAD 2.0-trained model instead of 1.0 because the data is more
challenging since it involves multiple passages, and the model has to compare valid and invalid passages
for answer span extraction, a case similar to the dataset we use. Templates we used are: The heuristics

How is the X?
How was the X?
How are the X?
How were the X?
How do you rate the X?
How would you rate the X?
How do you think of the X?
What do you think about the X?
What do you say about the X?
What happened to the X?
What did the X do?

Table 6: Templates for RC model

when the RC model fails: 1) We consider RC model fails when no span is extracted, or the entire text is
returned as an answer. 2) We identify the location of the term in the text and expand the scope from the
location both on the left and on the right, and when sentence boundary is found, we stop and return the
span as the span for the term. Note that we do find cases where the words around a term do not necessarily
talk about the term. However, we found such a case to be extremely rare.

B Derivation of IF++

Ipert,loss(Xij , z−kl; θ̂)

:= ∇εimp(Xij |X; θ̂ε,z−ij ,z)

∣∣∣∣∣
ε=0

=
dimp(Xij |X; θ̂)

dθ̂
(
dθ̂ε,z−kl,z

dε

∣∣∣∣∣
ε=0

)

= (∇θOy(X, θ̂)−∇θOy(X−ij , θ̂))(
dθ̂ε,z−kl,z

dε

∣∣∣∣∣
ε=0

)

= −(∇θOy(X, θ̂)−∇θOy(X−ij , θ̂))H−1θ̂ (∇θL(z−kl, θ̂)−∇θL(z, θ̂))

C Derivation of TracIn+ and TracIn++

Similar to IF(Koh and Liang, 2017) and TracIn(Pruthi et al., 2020b), we start from the Taylor expansion
on point θ̂t around z′ and z′−ij as

L(θ̂t+1, z
′) ∼ L(θ̂t, z′) +∇L(θ̂t, z′)(θ̂t+1 − θ̂t)

L(θ̂t+1, z
′
−ij) ∼ L(θ̂t, z′−ij) +∇L(θ̂t, z′−ij)(θ̂t+1 − θ̂t)

If SGD is assumed for optimization for simplicity, (θ̂t+1 − θ̂t) = λ∇L(θ̂t, z). Thus, putting it in above
equations and perform subtraction, we obtain

L(θ̂t+1, z
′)− L(θ̂t+1, z

′
−ij) ∼ L(θ̂t, z′−ij)− L(θ̂t, z′) + [∇L(θ̂t, z′)−∇L(θ̂t, z′−ij)]λ∇L(θ̂t, z)

5411

And,

imp(x′ij |z′; θ̂t+1)− imp(x′ij |z′; θ̂t) ∼ [∇L(θ̂t, z′−ij)−∇L(θ̂t, z′)]λ∇L(θ̂t, z)

So, the left term is the change of importance by parameter change; we can interpret it as the change of
importance score of span xij w.r.t the parameter of networks. Then, we integrate over all the contributions
from different points in the training process and obtain

TracIn+(x′ij |z′, z) =
∑
t

[∇L(θ̂t, z′−ij)−∇L(θ̂t, z′)]λ∇L(θ̂t, z)

The above formation is very similar to TracInwhere a single training instance z is evaluated as a whole.
But we are interested in the case where an meaning unit xkl in z can be evaluated for influence. Thus, we
apply the same logic of the above equation to z−kl, the perturbed training instance where token k to l is
masked, as

TracIn+(x′ij |z′, z−kl) =
∑
t

[∇L(θ̂t, z′−ij)−∇L(θ̂t, z′)]λ∇L(θ̂t, z−kl)

Then, the difference TracIn+(x′ij |z′, z) − TracIn+(x′ij |z′, z−kl) can indicate how much impact a
training span xkl on test span x′ij . Formally, the influence of xkl on x′ij is

TracIn++(x′ij , x−kl|z′, z) = λ
∑
t

[∇L(θ̂t, z′−ij)−∇L(θ̂t, z′)][∇L(θ̂t, z)−∇L(θ̂t, z−kl)]

We denote that such a form is very easy to implement, since each item in summation requires only four
(4) gradient estimates.

