
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 536–549

August 1–6, 2021. ©2021 Association for Computational Linguistics

536

Cascaded Head-colliding Attention

Lin Zheng♠♦ Zhiyong Wu♠ Lingpeng Kong♠♣
♠Department of Computer Science, The University of Hong Kong
♦School of Data and Computer Science, Sun Yat-sen University

♣Shanghai Artificial Intelligence Laboratory
zhenglin6@mail2.sysu.edu.cn,{zywu,lpk}@cs.hku.hk

Abstract

Transformers have advanced the field of natu-
ral language processing (NLP) in many ways.
At the heart of the Transformer architecture
is the multi-head attention (MHA) mechanism
which models pairwise interactions between
the elements of the sequence. Despite its mas-
sive success, the current framework ignores in-
teractions among different heads, leading to
the problem that many of the heads are redun-
dant in practice, which underutilizes the ca-
pacity of the model. To improve parameter
efficiency, we re-formulate the MHA as a la-
tent variable model from a probabilistic per-
spective. We present cascaded head-colliding
attention (CODA) which explicitly models the
interactions between attention heads through a
hierarchical variational distribution. We con-
duct extensive experiments and demonstrate
that CODA outperforms the transformer base-
line, by 0.6 perplexity on Wikitext-103
in language modeling, and by 0.6 BLEU on
WMT14 EN-DE in machine translation, due to
its improvements on the parameter efficiency.1

1 Introduction

Transformers (Vaswani et al., 2017) have advanced
the field of natural language processing (NLP) on a
variety of important tasks, including language mod-
eling (Dai et al., 2019; Baevski and Auli, 2019),
language understanding (Devlin et al., 2019; Yang
et al., 2019b), and machine translation (Vaswani
et al., 2017; Dehghani et al., 2019; Liu et al.,
2020). It has also found its place in computer vi-
sion (Dosovitskiy et al., 2020), and in intelligent
agents (Vinyals et al., 2019) where sequence mod-
eling plays a key role as well. The cornerstone of
the transformer architecture is the multi-head at-
tention (MHA) mechanism which models pairwise
interactions between the elements of the sequence.

1Our implementation is publicly available at https://
github.com/LZhengisme/CODA.

An attention function can be described as mapping
a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all
vectors. The output is computed as a weighted
sum of the values, where the weight assigned to
each value is computed by a compatibility func-
tion of the query with the corresponding key. A
multi-head attention (MHA) mechanism extends
the idea through performing multiple separately pa-
rameterized attention functions acting in parallel to
contextualize the input representations. Their out-
puts are then gathered by an affine transformation,
allowing the model to jointly attend to information
from different representation subspaces at different
positions.

Despite its massive success, the current frame-
work ignores the interactions among different
heads, leading to the problem that many of the
heads are redundant in practice (i.e., attending to
the same regions of the sequence), which under-
utilizes the capacity of the model (Voita et al.,
2019; Michel et al., 2019a). At the same time,
recent research (Tang et al., 2018; Clark et al.,
2019; Voita et al., 2019; Wu et al., 2020, inter
alia) demonstrates that heads in MHA have the po-
tential to capture distinct information from input
sequences, ranging from syntactic and semantic
features to alignment information between source
and target sentence pairs. These observations sug-
gest that multiple heads should be encouraged to
extract complementary information. Therefore, it
is highly appealing to take into account the inter-
actions among different attention heads from the
perspective of parameter efficiency and the expres-
siveness of the model.

In this work, we introduce head-colliding atten-
tion (§3). We formulate MHA as a probabilistic
model, where each attention head is represented
by a latent variable and all of them collide into
the observed sequence data (Figure 1a). In this

https://github.com/LZhengisme/CODA
https://github.com/LZhengisme/CODA

537

probabilistic graphical model structure, attention
heads work as individual factors to explain the data.
Although each factor is independent of each other
a priori, they interact with each other automati-
cally, conditioning on observations, thanks to the
explaining-away effects (Pearl, 1989; Wellman and
Henrion, 1993).

The head-colliding attention mechanism intro-
duces new computational challenges in training
the model. We will discuss how we tackle these
using variational methods (Blei et al., 2017). We
propose cascaded head-colliding attention (CODA,
Figure 1b). As our main model, CODA adopts a hi-
erarchical variational distribution (Ranganath et al.,
2016) to allow both rich head interactions and ef-
fective computations (§4).

We validate our method in language modeling
and machine translation experiments (§5). CODA

outperforms the vanilla MHA transformer on both
tasks, on Wikitext-103 by 0.6 perplexity and
on WMT14 EN-DE by 0.6 BLEU. Further analysis
shows that CODA learns to encourage diversity in
different heads (Figure 2) and to promote parameter
efficiency when increasing the number of heads
(§5.3).

2 Background

Multi-head attention (MHA) mechanism plays an
important role in modern transformer architecture
(Vaswani et al., 2017). It extends the classical at-
tention mechanism by running multiple attention
function heads in parallel.

An MHA module is composed of h identical
blocks (usually referred to as attention heads).
Each head will generate a hidden state Hi based on
the input Query, Key and Value matrices, denoted
as Q, K, and V respectively. The hidden states
from different heads are then aggregated as the
output of the MHA module:

∑n
i=1HiW

o
i , where

W o
i are model parameters.
In the i-th head, the input matrices Q, K and V

are first linearly projected into different subspace
representations Q̃i, K̃i, and Ṽi, based on different
learnable parameters. After that, we compute the
inner product over all projected queries and keys
as the attention logits zi, which are then passed
through a row-wise softmax2 to obtain head atten-
tion weights ai:

ai = softmax(zi) = softmax(Q̃iK̃
T
i). (1)

2We omit the scaling factor for simplicity.

The final output of a single attention block is the
weighted sum of Ṽi:

Hi = aiṼi.

As we can see, the core of MHA is to calculate
ai in each head. We thus refer to ai as the i-th
attention head.

In sequence prediction tasks, the model takes
as input a source sequence of length m and out-
puts a target sequence of length n in an auto-
regressive manner. It predicts each token Y within
the target sequence through a categorical distribu-
tion pvanilla(Y|X), where X includes the source
sequence as well as a previously generated pre-
fix. With respect to an MHA block a1, . . . ,ah,
the model predicts target tokens Y by first feed-
ing these heads into a complex non-linear trans-
formation3 denoted by φ(·), and then passing it
through a softmax function over the entire vocab-
ulary. Therefore, the output probability can be
written as pvanilla(Y|X) = f(a1, . . . ,ah), where

f(a1, . . . ,ah) := softmax(φ(a1, . . . ,ah)).

3 Head-colliding Attention

In this section, we introduce head-colliding atten-
tion. Specifically, we formulate MHA as a prob-
abilistic model, where each attention head is rep-
resented by a latent variable. The name reflects
a “collider” in the context of probabilistic graphi-
cal models (Figure 1a). We will first explain how
head-colliding attention permits the modeling of
interactions among different heads and then discuss
how vanilla MHA can be viewed as a marginalized
version of head-colliding attention, which ignores
any head interactions.

Considering a single MHA block, we cast each
attention head ai as a latent variable. The proba-
bility of target Y conditioning on input X can be
obtained by marginalizing over all heads A (we
denote A := {a1, . . . ,ah}):

p(Y|X) =

∫
A
p(Y|A,X)p(A|X)dA

= Ep(A|X) [f(A)] .

p(A|X) is the joint prior distribution. The corre-
sponding directed graphical model is demonstrated

3Since a transformer typically stacks several attentive lay-
ers, for an MHA block in some layer, subsequent layers will
induce a non-linear transformation φ(·) for its attention heads.
For instance, φ(·) may include several other MHA blocks and
feed-forward networks.

538

a1 a2 ah

Y

. . .

(a) Head-colliding atten-
tion.

a11 a12 a1h

a21 a22 a2h

aL1 aL2 aLh

Y

. . .

. . .

. . .

(b) Cascaded head-colliding
attention (CODA).

Figure 1: (a) Left: Probabilistic graphical model
(PGM) diagram of head-colliding attention. Although
each head variable is independent a priori, they inter-
act with each other after observing targets Y, which
is referred as explaining-away effect. (b) Right: PGM
diagram of a 3-layer cascaded head-colliding attention
(CODA). ali denotes the i-th attention head at trans-
former layer l. Note that all dependencies from X are
omitted in these diagrams for simplicity.

in Figure 1a, where the links from different heads
collide on the observation variable Y. A crucial
property of this graphical model is the “explaining-
away” effect (Pearl, 1989; Wellman and Henrion,
1993) of attention heads A when observing the
output Y. In other words, if a head ai attends
to part of the input which accords well with ob-
servation, it immediately discourages other heads
from attending to the same part of the input but
encourages them to look into complementary in-
formation.4 This mechanism effectively reduces
head redundancy and in turn improves parameter
efficiency.

Vanilla vs. head-colliding attention We now
take a closer look at the vanilla MHA (§2). Recall
that in vanilla MHA, all attention heads are deter-
ministic. From the perspective of latent variable
models, this is computationally equivalent to taking
expectations of latent head variables. The output
probability distribution pvanilla(Y|X) can then be
expressed as:

f(Ep(a1|X) [a1] , . . . ,Ep(ah|X) [ah]). (2)

This means we are only interested in the individ-
ual expectations when using the attention heads
in vanilla MHA for predictions. On the contrary,

4In other words, if we confirm that some head accords
well with the observation, then the probability of other heads
should be reduced since there is less need to invoke them,
according to Occam’s razor.

in head-colliding attention the distribution of Y is
defined as:

p(Y|X) = Ep(a1,...,ah|X) [f(a1, . . . ,ah)] .

Note the inherent difference of when to take the
expectation in vanilla and head-colliding attention.
Since f(·) is a complex non-linear function (§2),
these two formulations are not equivalent in gen-
eral and may have a large gap between the two
distributions. Concretely, vanilla MHA ignores any
possible interactions among different heads. As
indicated in equation 2, it first marginalizes out ev-
ery single head before observing targets – one head
will not learn what other heads are attending to
despite the fact Y is observed. This is why vanilla
MHA is prone to redundancy as many previous
studies (Voita et al., 2019; Michel et al., 2019a,
inter alia) discovered. Head-colliding attention,
on the other hand, permits rich head interactions
due to the expressive non-linear function f(·) in-
side the expectation over different latent variables
a1, . . . ,ah. However, the complexity of head inter-
actions also leads to intractability in training the
model, which we will discuss in the next section.

4 Training Head-colliding Attention

We train the model by performing maximum likeli-
hood estimation. Here, the log marginal likelihood
can be expressed as:

log p(Y|X) = logEp(A|X) [p(Y|A,X)] .

Unfortunately, this is intractable in general because
it requires marginalizing over all possible configu-
rations of attention heads. The standard technique
is to use variational inference, which optimizes
the log marginal by maximizing its evidence lower
bound (called ELBO) (Blei et al., 2017):

L := Eq(A|X)

[
log

p(Y|A,X)p(A|X)

q(A|X)

]
(3)

= log p(Y|X)−KL(q(A|X)||p(A|X,Y))

≤ log p(Y|X),

where q(A|X) is the variational distribution5 over
latent variables A. p(A|X,Y) is the intractable
posterior distribution of all heads given observa-
tions Y and the input X, which encodes the rich

5Although the variational distribution q should depend on
target Y in principle, such conditioning renders testing diffi-
cult since the target information is not available during testing.
For this reason, we only consider the source X hereafter.

539

head interactions we desire, as discussed in §3.
Therefore, an ideal variational distribution q(A|X)
should be close to the true posterior p(A|X,Y). In
this case, the samples would accurately reflect the
head interactions and the variational distribution
would yield a tighter bound to L to facilitate the
training.

A straight-forward choice of q(A|X) is to
use the mean-field approximation (Kingma and
Welling, 2013):

q(A|X) = q(a1,a2, . . . ,ah|X) =
h∏

i=1

q(ai|X).

However, it has similar drawbacks as the vanilla
MHA.6 The mean-field approximation assumes the
independence of different heads and hence the in-
teractions are greatly limited.

Alternatively, one could parameterize q(A|X)
using an auto-regressive model.7 Although this
is much more expressive, its sequential nature
severely slows down training, making it infeasi-
ble in practice.

Cascaded Head-colliding attention Our solu-
tion to this problem is to employ hierarchical struc-
tures for head-colliding attention, where interac-
tions among heads could be effectively incorpo-
rated into the model (Sønderby et al., 2016; Ran-
ganath et al., 2016).

Conveniently, the hierarchical nature of the trans-
former architecture offers an effective way of con-
structing such proposal distributions. Given a trans-
former with L layers, we denote the set of all at-
tention heads at layer l − 1 and l as Al−1 and Al,
respectively. Following the bottom-up computation
of the transformer, the distribution of Al must rely
on the instantiated values of Al−1. In this sense,
Al−1 can be seen as the common variables that
govern Al (Figure 1b). Formally, we have:

q(A1, ...,AL|X)=q(A1|X)

L∏
j=2

q(Aj |X,Aj−1).

Despite the fact that each attention head ali ∈ Al at
l-th layer is conditionally independent given Al−1,
they become dependent when we marginalize Al−1

6Note that the vanilla MHA does not define distributions
over heads in its original context. We derive this from the
latent-variable perspective.

7This works well in our preliminary experience, despite its
extremely expensive computational cost.

out. In particular, the marginal distribution of each
Al becomes:

q(Al|X)=

∫
Al−1

q(Al−1|X)q(Al|X,Al−1)dAl−1.

This corresponds to an infinite mixture of the mean-
field distributions q(Al|X,Al−1) and is able to
capture rich head interactions (Ranganath et al.,
2016). Our main model adopts this cascaded pro-
posal distribution in figure 1b, and therefore we
name it cascaded head-colliding attention (CODA).

The only problem left now is how to specify the
conditional distribution q(Al|X,Al−1) for all l =
1, 2, . . . , L. We first impose the basic constraints
on head values as in vanilla MHA, that is, all head
values must range within a simplex ∆n−1:

∆n−1 = {Al|
n∑

k=1

ali,:k = 1, ∀i = 1, . . . , h}.

Here ali,:k is the k-th column of the i-th atten-
tion head at layer l and 1 denotes the vector of
all 1’s. For efficient training and inference, we
adopt Gaussian-logistic distributions (Blei and Laf-
ferty, 2006; Cohen et al., 2008), which not only
satisfy the constraints above but also benefit from
the effective reparameterization trick (Kingma and
Welling, 2013; Rezende et al., 2014; Titsias and
Lázaro-Gredilla, 2014).

In particular, recall that in vanilla MHA, ai =
softmax(zi) = softmax(Q̃iK̃

T
i) (equation 1).

We also denote the attention logits at l-th layer
as Zl := {zl1, . . . , zlh}. For head i at layer l, we
first sample from a multivariate Gaussian distri-
bution q(zli,j:|z

l−1
i,j:) 8 and pass the samples into a

row-wise softmax function to yield head values:

zli,j: ∼ N(µli,j:,Σ), ali,j: = softmax(zli,j:),

where zli,j: and ali,j: represent the j-th row of the
i-th attention logit and attention head at layer l
respectively.

To explicitly model hierarchical structures
among attention heads, we propose to add a di-
rect connection between attention heads at adjacent
layers (Figure 1b). Such connections offer direct
access to the information of attention in the previ-
ous layer. Specifically, for each head i at layer l we

8We only explicitly define the attention logit z as random
variables, while the distribution of heads a is induced via
a deterministic transformation (i.e., softmax function) of z;
therefore it suffices to build dependencies between attentive
logits instead.

540

set the mean µil as the sum of two parts:

µi
l = Q̃iK̃

T
i︸ ︷︷ ︸

vanilla MHA

+ σi(Z
l−1)︸ ︷︷ ︸

direct connection

, (4)

where σi(·) is a two-layer multilayer perceptron
(MLP) to fuse information from different heads
Zl−1 (see the cascading connections in Figure 1b
for an illustration). We set the covariance ma-
trix Σ to the identity matrix for all attentive log-
its. We give the prior the same form as the vari-
ational posterior and parameters are shared be-
tween q(A1, ...,AL|X) and p(A1, ...,AL|X) for
our objective (equation 3). With the help of param-
eter sharing, the KL term in equation 3 is also can-
celled out due to the identical distributions.9 This
choice works well in practice, where it not only
allows CODA to use almost the same amount of pa-
rameters as vanilla Transformer, but also eliminates
the need to invoke advanced training techniques for
amortized variational inference.10 More details can
be found in Appendix A.

5 Experiments

We conduct experiments on language modeling and
machine translation tasks.

5.1 Setup

Datasets First, we conducted experiments for
token-level language modeling on a large-scale
benchmark dataset Wikitext-103 (Merity et al.,
2016), which consists of articles from Wikipedia
with the token number around 103M/218K/246K
for the training/validation/testing splits respectively.
The vocabulary size is 267,744.

For machine translation, we consider two stan-
dard datasets:

• WMT14 EN-DE (Bojar et al., 2014), which con-
tains about 4.5M/3K/3K sentences pairs for train-
ing/validation/testing splits respectively. We fol-
low Ott et al. (2018) and Peng et al. (2020) to
preprocess the dataset, and obtain a shared vo-
cabulary between source and target language of
around 32K byte pair encoding (BPE, Sennrich
et al. (2016)) types.
9Therefore, it can also be derived by directly applying the

Jensen’s inequality on the log marginal likelihood.
10For instance, training a standard variational auto-encoder

(VAE) for NLP tasks often suffers from the posterior collapse
problem due to the heavy KL regularization (Bowman et al.,
2016), where some tricks have to be used to achieve good
performance, such as KL annealing, etc.

• IWSLT14 DE-EN (Cettolo et al., 2014). Fol-
lowing standard practice (Edunov et al.,
2018; Peng et al., 2020), we pre-process the
160K/7K/7K sentence pairs and build train-
ing/validation/testing sets accordingly. This gen-
erates a vocabulary of around 9K(7K) BPE types
for source(target).

Implementation details We implement our
model with PyTorch (Paszke et al., 2019) and
FairSeq toolkit (Ott et al., 2019). In particular,
our model is based on the vanilla transformer ar-
chitecture (Vaswani et al., 2017). For CODA, we
replace all vanilla MHA blocks with the cascaded
head-colliding attention, for both self attention and
cross attention (if any). In language modeling,
we use adaptive input embeddings (Baevski and
Auli, 2019) and set context size to 512 and 480 for
training and testing respectively, due to constraints
of computational resources. In machine transla-
tion, we set beam size to 5 and adopt the hyper-
parameters from (Peng et al., 2020) for IWSLT14
DE-EN. For WMT14 EN-DE we set beam size to
4, length penalty to 0.6, and average last 10 check-
points for testing, following Vaswani et al. (2017).
Further implementation details can be found in Ap-
pendix A.

5.2 Main results

The results of language modeling on
Wikitext-103 dataset are reported in Ta-
ble 1. As we can see from the table, CODA barely
introduces any additional parameters. However,
by taking into account head interactions, CODA

significantly outperforms TRANSFORMER by
over 0.6 perplexity. For reference, we also report
the best setting (denoted by TRANSFORMER †)
in Baevski and Auli (2019), which uses a much
larger context size (3072/2560 vs. 512/480 for
training/testing), CODA still outperforms by a
substantial margin of 0.3 perplexity. This indicates
that encouraging head interactions can improve
parameter efficiency.

To show whether CODA has promoted head in-
teractions and reduced head redundancy, we quali-
tatively visualize the attention heads in both CODA

and TRANSFORMER via heatmaps. Concretely, we
compute the Jensen-Shannon Divergence (JSD) be-
tween each pair of attention heads at the same layer.

In particular, we assume head values define a cat-
egorical distribution in both TRANSFORMER and
CODA model to facilitate comparison. That is, an

541

Model # Params. Val. PPL Test PPL
TRANSFORMER 246.93M 18.35 19.08

TRANSFORMER † 246.93M 17.97 18.70
CODA 246.96M 17.81 18.48

Table 1: Validation (Val.) and testing Perplexity (PPL)
on Wikitext-103 dataset (lower is better). TRANS-
FORMER is the base model in Baevski and Auli (2019)
with the same context size as CODA (512/480 for train-
ing/testing), while TRANSFORMER† is the same model
but with the best setting in their paper, which uses much
larger context size (3072/2560 respectively); the result
for TRANSFORMER† is as reported in Baevski and Auli
(2019).

attentive head ai induces n categorical distributions
for each query position. For the j-th distribution,
it indicates how the j-th target position attends to
all m source positions and is denoted by p(x|ai,j:).
For two heads i and i′, we first compute their aver-
age distribution as

m :=
p(x|ai,j:) + p(x|ai′,j:)

2

Then the JSD value between the i-th and i′-th atten-
tion head is computed by summing all of n induced
distributions:

n∑
j=1

1

2

(
KL(p(x|ai,j:)||m)+KL(p(x|ai′,j:)||m))

)
We average computed JSDs for all validation sam-
ples. Note that a larger JSD value (darker color)
indicates that two heads are behaving more differ-
ently (i.e. less redundancy between them), and vice
versa.

As shown in Figure 2, JSD heatmaps in CODA

are clearly darker than those in TRANSFORMER.
This suggests that CODA permits richer head in-
teractions, which fosters different heads to com-
municate with each other and encourages them to
become complementary. Consequently, our model
effectively reduces head redundancy in MHA and
improves parameter-efficiency.

The results on IWSLT14 DE-EN and WMT14
EN-DE datasets are shown in Table 2. We see that
CODA exhibits clear improvements over TRANS-
FORMER: a 1.1 point gain in BLEU on IWSLT14
DE-EN dataset and a 0.6 BLEU improvement on
WMT14 EN-DE dataset. Despite such significant
gains over the baseline, CODA only introduce very
few additional parameters (e.g., 0.03% extra param-
eters on IWSLT14 DE-EN). This, again, shows

Model
IWSLT14 DE-EN WMT14 EN-DE
Params. BLEU # Params. BLEU

TRANSFORMER 39.47M 34.5 60.92M 27.4
CODA 39.48M 35.6 60.94M 28.0

Table 2: Performance of TRANSFORMER and CODA on
IWSLT14 DE-EN and WMT14 EN-DE datasets.

that CODA is more parameter efficient than vanilla
Transformer due to the cascaded head-colliding at-
tention we proposed. Similar to experiments on
language modeling, we also visualize the head be-
haviors to measure attentive head interactions (See
Figure 5 and Figure 6 in Appendix B), where we
observe similar phenomena on translation tasks.
Specifically, different heads in CODA are often com-
plementary to each other and focus on quite differ-
ent regions of sequences, rather than becoming
redundant or even identical as observed in TRANS-
FORMER models.

5.3 Analysis: the effect of the number of
attention heads

Despite one would hope increasing the head num-
ber in MHA leads to a free-ride in achieving better
performance, in practice it is often not the case as
vanilla MHA suffers from the problem of parame-
ter redundancy. Following Vaswani et al. (2017),
we vary the number of attention heads (4,8,16,32),
but keep the amount of computation constant. Our
results on IWSLT14 DE-EN are shown in Table 3.
We observe that the translation quality of baseline
transformer (which uses vanilla MHA as its main
building blocks) decreases almost linearly when
increasing number of attention heads (Figure 3),
which agrees with previous studies (Vaswani et al.,
2017; Voita et al., 2019; Michel et al., 2019b).

Intuitively, since the total number of parameters
in the model remains unchanged, more heads in-
dicate that the number of parameters allocated to
each head is reduced, which limits the representa-
tional power of every single attention head. Due to
the independence assumption between the heads,
many of them tend to focus on similar regions of
the sequence, leading to a great waste of modeling
capacity.

In the case of CODA, we observe better BLEU
scores in response to the increasing head number.
Rich interactions in CODA could encourage dif-
ferent heads to cover broader regions of input se-
quence, which in turn offers more useful informa-
tion for training. The perplexity (PPL) reflects

542

0
2

4
6

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

0 2 4 6

0
2

4
6

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0

200

400

Figure 2: Jensen-Shannon Divergences (JSD) for each pair of attention heads at all 16 layers on Wikitext-103
validation dataset. Top: JSD heatmap of attention heads from TRANSFORMER model; Bottom: JSD heatmap of
attention heads from CODA. Columns represent different layers of both models. The darker color implies a larger
divergence between two heads and in turn less redundancy.

heads
BLEU PPL

TRANSFORMER CODA TRANSFORMER CODA

4 34.53 35.65 4.95 4.64
8 34.35 35.74 5.04 4.54
16 33.91 35.84 5.15 4.55
32 33.17 35.96 5.37 4.52

Table 3: Left: BLEU scores on test dataset for TRANS-
FORMER and CODA at different numbers of attention
heads; Right: Perplexity on validation dataset for
TRANSFORMER and CODA at different numbers of at-
tention heads.

4 8 16 32
Number of heads

33.5

34.0

34.5

35.0

35.5

36.0

BL
EU

Base
CODA

4 8 16 32
Number of heads

4.6

4.8

5.0

5.2

5.4

PP
L

Base
CODA

Figure 3: Left: BLEU scores on test dataset for base
transformers and CODA under different number of at-
tention heads (higher is better); Right: Perplexity on
validation dataset for base transformers and CODA un-
der different number of attention heads (lower is bet-
ter).

similar trends. The coordination between differ-
ent heads in CODA greatly improves the model’s
parameter efficiency.

5.4 Ablation analysis

In this section, we present an ablation study
to investigate effects of different components in
CODA. Concretely, we compare four models on
the IWSLT14 DE-EN machine translation task:
(i) the full model CODA, (ii) a variant of CODA ab-
lating the cascaded structure (§4), (iii) a variant of
CODA without using head-colliding attention (§3)
and (iv) the baseline TRANSFORMER model.

In more details, for model (ii), we remove the
second term in equation 4, which turns off the di-
rect cascading structure, despite still being a proper

hierarchical latent variable model11. In model (iii),
attention heads are deterministic (instead of being
latent variables) as in vanilla Transformers, but cas-
cading connections are incorporated. We observe
its close connection with the recently proposed RE-
ALFORMER (He et al., 2020), a TRANSFORMER

model that adds a residual connection between at-
tention logits at adjacent layers. Since in model
(iii) all attention heads are deterministic, it is un-
necessary to fuse different heads (see §4). In this
case, we simply implement model (iii) as a REAL-
FORMER (and thus referred to as REALFORMER

hereafter) to demonstrate the effect of cascading-
like structures more clearly.12

We report BLEU score for translation quality,
and the Jensen-Shannon Divergences (JSD) aver-
aged over all heads pairs of all MHA blocks for
quantitative evaluation of head interactions. As
demonstrated in Table 4 and Figure 4, even with-
out cascading connections for explicit hierarchical
structures, head-colliding attention has the ability
(albeit limited) to induce reasonable correlations
among different heads, reflected in the average JSD.
This is due to the explaining-away effects and the
native hierarchical structure in the transformers, as
discussed in §3. In CODA, because individual heads
have access to the other heads from a probabilistic
perspective, they are more prone to offering com-
plementary information for each other to jointly
explain the observed data. This effect is further
enhanced when cascading connections are added
to the model. In contrast, if we simply incorporate
such cascading connections into a vanilla TRANS-
FORMER model, we found it does not significantly

11Note that the first term Q̃iK̃
T
i in equation 4 also depends

on the instantiated value of zl−1
i,j: , which induces an implicit

hierarchical dependency for attention between adjacent layers.
12The main difference between residual connections in RE-

ALFORMER and cascading connections in CODA is that, the
former directly performs a head-wise addition of previous-
layer attention logits; in contrast, our cascading connection
makes use of an MLP σ(·) to mix different attention heads,
which enhances head interactions for CODA.

543

Model Avg. JSD BLEU
CODA 13.72 35.65

CODA- CS 11.24 35.17
REALFORMER (He et al., 2020) 8.53 35.01

TRANSFORMER 7.11 34.53

Table 4: The average JSD and BLEU scores with dif-
ferent model configurations. CODA-CS indicates the ab-
lation of the cascading structures from the full model
(i.e., simply replacing all MHA blocks of base trans-
former with head-colliding attention); REALFORMER
is a recently proposed TRANSFORMER model that has
cascading-like structures but still views each head as a
deterministic value rather than latent variables.

encourage head interactions and only improves the
baseline marginally. In this case, the performance
improvement might be mainly due to residual con-
nections, which are often considered to be effective
in facilitating training (He et al., 2016). Interest-
ingly, we note a positive correlation between aver-
age JSD and BLEU, suggesting that encouraging
complementary attention heads may help improve
translation quality.

6 Related Work

Attention mechanisms were first applied to recur-
rent networks in (Bahdanau et al., 2014). It was
then extended to multi-head attention (MHA) and
became the key component in transformer architec-
tures (Vaswani et al., 2017).

To study the utility of multiple attention heads,
Voita et al. (2019) focused on identifying individ-
ual contributions of each attention head. Michel
et al. (2019a) conducted extensive experiments to
demonstrate that pruning out most heads after train-
ing does not lead to a drop in performance during
inference. You et al. (2020) further revealed that
replacing learnable attention heads with samples
from fixed Gaussian distributions can achieve al-
most the same performance as original models. Ad-
ditionally, Behnke and Heafield (2020) proposed
to iteratively prune attention heads during training
based on the lottery ticket hypothesis. These works
indicate that there is a lot of head redundancy in
the MHA transformer architectures.

Instead of pruning unnecessary parameters and
down-sizing transformer models, there are also
works that propose to improve parameter efficiency
in transformers. For instance, Li et al. (2018) in-
troduced a regularization term to explicitly pro-
mote diversity among different heads. Yang et al.
(2019a) proposed to use convolutional kernels to

capture correlations among not only local windows
of sequences, but also different heads. An et al.
(2020) considered each head as a sample from the
same distribution, and presented a sampling algo-
rithm that avoids samples from collapsing into local
modes. It hence explicitly encouraged the repul-
siveness in MHA. Besides, MAE (Peng et al., 2020)
converted a vanilla MHA to a mixture-of-experts
model, where each expert component activates only
a subset of attention heads. With learned probabili-
ties, different experts could be specialized on differ-
ent inputs. Different from these works, CODA does
not explicitly promote head diversity nor specialize
different heads. Instead, we focus on studying head
interactions from a probabilistic perspective, which
reveals the close connection between vanilla MHA
and CODA.

Another research line relating to our work is to
incorporate latent variables into attention modules.
Xu et al. (2015) investigated the connection be-
tween vanilla deterministic single-head attention
and its stochastic counterpart. Deng et al. (2018)
explored this further and proposed to use varia-
tional inference techniques for training the model.
They considered both cases of discrete and contin-
uous latent variables. Bayesian attention modules
(Fan et al., 2020) introduced continuous latent dis-
tributions for attention that are amenable to repa-
rameterization tricks. Our work is different from
them in that we mainly investigate the MHA mech-
anism and aim to improve parameter-efficiency by
recovering potential interactions among different
heads, which are ignored in vanilla MHA.

Concurrently, He et al. (2020) proposed to add
residual connections between attention scores at
adjacent layers, similar to our cascading connec-
tions. Nevertheless, our motivation for using the
cascaded structure is quite different: we aim to con-
struct direct hierarchical dependencies for latent
variable models, while He et al. (2020) is mainly
motivated to improve transformer architectures and
obtain performance gains.

7 Conclusion and Future Work

We present CODA by re-formulating the multi-head
attention (MHA) as a latent variable model from
a probabilistic perspective. CODA explicit models
of the interactions among attention heads through
a hierarchical variational distribution. We conduct
extensive experiments and demonstrate that CODA

outperforms the transformer baseline in language

544

0
1

2
3

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0
1

2
3

0 1 2 3

0
1

2
3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) TRANSFORMER

0
1

2
3

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0
1

2
3

0 1 2 3

0
1

2
3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(b) REALFORMER

0
1

2
3

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0
1

2
3

0 1 2 3

0
1

2
3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(c) CODA-CS

0
1

2
3

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0
1

2
3

0 1 2 3

0
1

2
3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0

5

10

15

20

25

(d) CODA

Figure 4: Jensen-Shannon Divergences (JSD) for each pair of attention heads at the same layer on IWSLT14
DE-EN dataset for TRANSFORMER, REALFORMER, CODA-CS and CODA model respectively. Each row indicates
different kinds of attention, including encoder self-attention, decoder self-attention and decoder-encoder cross
attention (from top to bottom), respectively; and each column indicates average JSD scores at different layers.

modeling and machine translation. The analysis
shows that CODA learns to encourage the diver-
sity in different heads and to promote parameter
efficiency when increasing the number of heads.
In this framework, we will be able to impose ex-
plicit constraints or regularization on different at-
tention heads in a principal way (e.g. informa-
tive priors that promote diversity). Besides, we
can also consider more expressive (data-driven)
variational distributions. We leave these as the
future work. Our code is publicly available at
https://github.com/LZhengisme/CODA.

Acknowledgments

We thank the anonymous reviewers whose sug-
gestions helped clarify this work. This re-
search was supported in part by the University of
Hong Kong Research Committee under account
104006039.111994.14200.301.01.

References
Bang An, Jie Lyu, Zhenyi Wang, Chunyuan Li, Chang-

wei Hu, Fei Tan, Ruiyi Zhang, Yifan Hu, and
Changyou Chen. 2020. Repulsive attention: Re-
thinking multi-head attention as Bayesian inference.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 236–255, Online. Association for Computa-
tional Linguistics.

Alexei Baevski and Michael Auli. 2019. Adaptive in-
put representations for neural language modeling. In
International Conference on Learning Representa-
tions.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Maximiliana Behnke and Kenneth Heafield. 2020. Los-
ing heads in the lottery: Pruning transformer atten-
tion in neural machine translation. In Proceedings of

https://github.com/LZhengisme/CODA
https://doi.org/10.18653/v1/2020.emnlp-main.17
https://doi.org/10.18653/v1/2020.emnlp-main.17
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://doi.org/10.18653/v1/2020.emnlp-main.211
https://doi.org/10.18653/v1/2020.emnlp-main.211
https://doi.org/10.18653/v1/2020.emnlp-main.211

545

the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 2664–
2674, Online. Association for Computational Lin-
guistics.

David Blei and John Lafferty. 2006. Correlated topic
models. Advances in neural information processing
systems, 18:147.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe.
2017. Variational inference: A review for statisti-
cians. Journal of the American statistical Associa-
tion, 112(518):859–877.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, et al. 2014. Findings of the 2014
workshop on statistical machine translation. In Pro-
ceedings of the ninth workshop on statistical ma-
chine translation, pages 12–58.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating sentences from a continuous
space. In Proceedings of The 20th SIGNLL Con-
ference on Computational Natural Language Learn-
ing, pages 10–21, Berlin, Germany. Association for
Computational Linguistics.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report
on the 11th iwslt evaluation campaign, iwslt 2014.
In Proceedings of the International Workshop on
Spoken Language Translation, Hanoi, Vietnam, vol-
ume 57.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Shay Cohen, Kevin Gimpel, and Noah A Smith. 2008.
Logistic normal priors for unsupervised probabilis-
tic grammar induction. Advances in Neural Infor-
mation Processing Systems, 21:321–328.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In International Conference on
Learning Representations.

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and
Alexander Rush. 2018. Latent alignment and vari-
ational attention. Advances in Neural Information
Processing Systems, 31:9712–9724.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2018. Classical
structured prediction losses for sequence to se-
quence learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
355–364, New Orleans, Louisiana. Association for
Computational Linguistics.

Xinjie Fan, Shujian Zhang, Bo Chen, and Mingyuan
Zhou. 2020. Bayesian attention modules. Advances
in Neural Information Processing Systems, 33.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Ruining He, Anirudh Ravula, Bhargav Kanagal, and
Joshua Ainslie. 2020. RealFormer: Transformer
Likes Residual Attention. arXiv e-prints, page
arXiv:2012.11747.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu,
and Tong Zhang. 2018. Multi-head attention with
disagreement regularization. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2897–2903, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng
Gao. 2020. Very deep transformers for neural ma-
chine translation. arXiv preprint arXiv:2008.07772.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
http://arxiv.org/abs/2012.11747
http://arxiv.org/abs/2012.11747
https://doi.org/10.18653/v1/D18-1317
https://doi.org/10.18653/v1/D18-1317

546

Paul Michel, Omer Levy, and Graham Neubig. 2019a.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
pages 14014–14024.

Paul Michel, Xian Li, Graham Neubig, and Juan Pino.
2019b. On evaluation of adversarial perturbations
for sequence-to-sequence models. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 3103–3114, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

J. Pearl. 1989. Probabilistic reasoning in intelligent
systems - networks of plausible inference. In Mor-
gan Kaufmann series in representation and reason-
ing.

Hao Peng, Roy Schwartz, Dianqi Li, and Noah A.
Smith. 2020. A mixture of h - 1 heads is better than
h heads. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6566–6577, Online. Association for Computa-
tional Linguistics.

Rajesh Ranganath, Dustin Tran, and David Blei. 2016.
Hierarchical variational models. In International
Conference on Machine Learning, pages 324–333.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
Proceedings of the 31st International Conference on
Machine Learning, volume 32, pages 1278–1286.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
Søren Kaae Sønderby, and Ole Winther. 2016. Lad-
der variational autoencoders. In Advances in Neural
Information Processing Systems, volume 29, pages
3738–3746. Curran Associates, Inc.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Ma-
chine Learning, pages 1139–1147.

Gongbo Tang, Mathias Müller, Annette Rios, and Rico
Sennrich. 2018. Why self-attention? a targeted
evaluation of neural machine translation architec-
tures. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4263–4272, Brussels, Belgium. Association
for Computational Linguistics.

Michalis Titsias and Miguel Lázaro-Gredilla. 2014.
Doubly stochastic variational bayes for non-
conjugate inference. In Proceedings of the 31st In-
ternational Conference on Machine Learning, vol-
ume 32, pages 1971–1979.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czar-
necki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, et al. 2019. Grandmaster
level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Michael P. Wellman and M. Henrion. 1993. Explaining
’explaining away’. IEEE Trans. Pattern Anal. Mach.
Intell., 15:287–292.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4166–4176, Online. As-
sociation for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1314
https://doi.org/10.18653/v1/N19-1314
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/W18-6301
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/2020.acl-main.587
https://doi.org/10.18653/v1/2020.acl-main.587
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://proceedings.neurips.cc/paper/2016/file/6ae07dcb33ec3b7c814df797cbda0f87-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6ae07dcb33ec3b7c814df797cbda0f87-Paper.pdf
http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2020.acl-main.383

547

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In International conference on machine learn-
ing, pages 2048–2057.

Baosong Yang, Longyue Wang, Derek F. Wong,
Lidia S. Chao, and Zhaopeng Tu. 2019a. Convolu-
tional self-attention networks. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 4040–4045, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019b. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. In Advances in
Neural Information Processing Systems, volume 32,
pages 5753–5763. Curran Associates, Inc.

Weiqiu You, Simeng Sun, and Mohit Iyyer. 2020.
Hard-coded Gaussian attention for neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7689–7700, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/N19-1407
https://doi.org/10.18653/v1/N19-1407
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.687
https://doi.org/10.18653/v1/2020.acl-main.687

548

A Implementation details

For the σ network, it consists of a 2-layer MLP with
LeakyRelu non-linear activation and a residual
link from the input. It is a rather small network
and only accounts for 0.01-0.02% of the total pa-
rameters. Recall that the number of attention heads
is denoted by h, the source and target length is m
and n respectively, and the batch size is denoted
by b. The hidden size is set to α ∗ h, where we
select α from {2, 4, 8} based on the validation set.
Note that the additionally introduced number of
parameters is negligible compared to the model
size, accounting for only 0.01-0.02% of the total
parameters. Since we often represent the attention
scores (or logits) z as a multi-dimensional tensor
with shape (b, h, n, m), we first transpose it
to shape (b, m, n, h) and feed it into the σ
network. It then outputs h values so that each com-
ponent σi computes the fused information from
all previous layer’s attention heads. By adding its
output to the current layer’s attention logits, we
could effectively construct a direct cascading con-
nection for our hierarchical proposal. Note that σ
network is neither shared among different heads
nor different layers.

A.1 Machine translation

For WMT14 EN-DE, the transformer-base archi-
tecture in Vaswani et al. (2017) is used, where both
the encoder and decoder consist of 6 layers with
hidden size 512. For MHA blocks at each layer,
the number of attention heads is set to 8 with the di-
mension of hidden layer representations being 512;
For feed forward networks, the hidden size is set to
2048. The rate of dropout is set to 0.1. For train-
ing, we follow the same setup as in Vaswani et al.
(2017), including that label smoothing with rate 0.1,
the Adam optimizer (Kingma and Ba, 2014) is used
for optimization, the inverse square root schedul-
ing is utilized for learning rate and the number of
warm-up steps is set to 4000.

For IWSLT-14, we follow the configuration of
hyper-parameters in Fairseq package 13. In details,
it mostly follows the same architecture and training
setup as above, except that it uses a smaller feed
forward network with hidden dimension 1024, a
larger dropout rate 0.3 and less attention heads 4.

For both datasets, we apply a compound split
post-processing to facilitate comparison. Addition-

13https://github.com/pytorch/fairseq/
tree/master/examples/translation

ally, we use activation dropout with rate 0.1 for all
used models on both datasets as we find it helps
our model converge better.

A.2 Language modeling
For Wikitext-103, we base our model on
Baevski and Auli (2019) with the same hyper-
parameter configuration and training setup. The
model architecture consists of 16 transformer lay-
ers, where it uses adaptive input representations, 8
heads for each MHA block, dropout rate of 0.3, hid-
den dimension of 1024, and hidden size of 4096 for
feed forward networks. For training, Nesterov’s ac-
celerated gradient (NAG) method (Sutskever et al.,
2013) is used with gradient norm clipping and a
cosine learning rate schedule14.

B Additional experimental results

Figure 5 and Figure 6 visualize head interactions
within TRANSFORMER and CODA on IWSLT14
DE-EN and WMT14 EN-DE translation tasks re-
spectively.

14More details can be found in Baevski and Auli
(2019) and the training script based on Fairseq codebase:
https://github.com/pytorch/fairseq/blob/
master/examples/language_model/README.
adaptive_inputs.md.

https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/blob/master/examples/language_model/README.adaptive_inputs.md
https://github.com/pytorch/fairseq/blob/master/examples/language_model/README.adaptive_inputs.md
https://github.com/pytorch/fairseq/blob/master/examples/language_model/README.adaptive_inputs.md

549

0
1

2
3

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0
1

2
3

0 1 2 3

0
1

2
3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) TRANSFORMER

0
1

2
3

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0
1

2
3

0 1 2 3

0
1

2
3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0

5

10

15

20

25

(b) CODA

Figure 5: Jensen-Shannon Divergences (JSD) for each pair of attention heads at the same layer on IWSLT14
DE-EN validation dataset, which are evaluated on both TRANSFORMER model and CODA. Each row indicates
different kinds of attention, including encoder self-attention, decoder self-attention and decoder-encoder cross
attention (from top to bottom), respectively; and each column indicates average JSD scores at different layers.

0
2

4
6

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0
2

4
6

0 2 4 6

0
2

4
6

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

(a) TRANSFORMER

0
2

4
6

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0
2

4
6

0 2 4 6

0
2

4
6

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0

5

10

15

20

25

(b) CODA

Figure 6: Jensen-Shannon Divergences (JSD) for each pair of attention heads at the same layer on WMT14 EN-DE
dataset, which are evaluated on both TRANSFORMER model and CODA. Each row indicates different kinds of
attention, including encoder self-attention, decoder self-attention and decoder-encoder cross attention (from top to
bottom), respectively; and each column indicates average JSD scores at different layers.

