@inproceedings{cao-wang-2021-controllable,
title = "Controllable Open-ended Question Generation with A New Question Type Ontology",
author = "Cao, Shuyang and
Wang, Lu",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.502",
doi = "10.18653/v1/2021.acl-long.502",
pages = "6424--6439",
abstract = "We investigate the less-explored task of generating open-ended questions that are typically answered by multiple sentences. We first define a new question type ontology which differentiates the nuanced nature of questions better than widely used question words. A new dataset with 4,959 questions is labeled based on the new ontology. We then propose a novel question type-aware question generation framework, augmented by a semantic graph representation, to jointly predict question focuses and produce the question. Based on this framework, we further use both exemplars and automatically generated templates to improve controllability and diversity. Experiments on two newly collected large-scale datasets show that our model improves question quality over competitive comparisons based on automatic metrics. Human judges also rate our model outputs highly in answerability, coverage of scope, and overall quality. Finally, our model variants with templates can produce questions with enhanced controllability and diversity.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cao-wang-2021-controllable">
<titleInfo>
<title>Controllable Open-ended Question Generation with A New Question Type Ontology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuyang</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the less-explored task of generating open-ended questions that are typically answered by multiple sentences. We first define a new question type ontology which differentiates the nuanced nature of questions better than widely used question words. A new dataset with 4,959 questions is labeled based on the new ontology. We then propose a novel question type-aware question generation framework, augmented by a semantic graph representation, to jointly predict question focuses and produce the question. Based on this framework, we further use both exemplars and automatically generated templates to improve controllability and diversity. Experiments on two newly collected large-scale datasets show that our model improves question quality over competitive comparisons based on automatic metrics. Human judges also rate our model outputs highly in answerability, coverage of scope, and overall quality. Finally, our model variants with templates can produce questions with enhanced controllability and diversity.</abstract>
<identifier type="citekey">cao-wang-2021-controllable</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.502</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.502</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>6424</start>
<end>6439</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Controllable Open-ended Question Generation with A New Question Type Ontology
%A Cao, Shuyang
%A Wang, Lu
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F cao-wang-2021-controllable
%X We investigate the less-explored task of generating open-ended questions that are typically answered by multiple sentences. We first define a new question type ontology which differentiates the nuanced nature of questions better than widely used question words. A new dataset with 4,959 questions is labeled based on the new ontology. We then propose a novel question type-aware question generation framework, augmented by a semantic graph representation, to jointly predict question focuses and produce the question. Based on this framework, we further use both exemplars and automatically generated templates to improve controllability and diversity. Experiments on two newly collected large-scale datasets show that our model improves question quality over competitive comparisons based on automatic metrics. Human judges also rate our model outputs highly in answerability, coverage of scope, and overall quality. Finally, our model variants with templates can produce questions with enhanced controllability and diversity.
%R 10.18653/v1/2021.acl-long.502
%U https://aclanthology.org/2021.acl-long.502
%U https://doi.org/10.18653/v1/2021.acl-long.502
%P 6424-6439
Markdown (Informal)
[Controllable Open-ended Question Generation with A New Question Type Ontology](https://aclanthology.org/2021.acl-long.502) (Cao & Wang, ACL-IJCNLP 2021)
ACL